Math, asked by papafairy143, 3 days ago

Let [.] denotes the greatest integer function, then

 lim_{n \:  \to \:  \infty } \:  \:  \frac{[x] + [2x] + [3x] +  -  -  -  + [nx]}{ {n}^{2} }

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{n \to  \infty }\rm \frac{[x] + [2x] + [3x] + - - - + [nx]}{ {n}^{2} } \\

We know, by definition of Greatest Integer function,

\rm \: x - 1 < [x] \leqslant x \\

\rm \: 2x - 1 < [2x] \leqslant 2x \\

\rm \: 3x - 1 < [3x] \leqslant 3x \\

.

.

.

.

.

.

\rm \: nx - 1 < [nx] \leqslant nx \\

On adding above all inequalities, we get

\rm \: (x - 1) + (2x - 1) + \cdots + (nx - 1) < [x] + [2x] + \cdots + [nx] \leqslant x + 2x + \cdots + nx

\rm \: x(1 + 2 + \cdots + n) - n < [x] + [2x] + \cdots + [nx] \leqslant x(1 + 2 + \cdots + n)

We know,

\color{green}\boxed{ \rm{ \:1 + 2 + 3 + \cdots + n \:  =  \:  \frac{n(n + 1)}{2}  \: }} \\

So, on using this result, we get

\rm \: x\dfrac{n(n + 1)}{2}  - n< [x] + [2x] + \cdots + [nx] \leqslant  x\dfrac{n(n + 1)}{2}  \\

\rm \: \dfrac{xn(n + 1)}{2}  - n< [x] + [2x] + \cdots + [nx] \leqslant  \dfrac{xn(n + 1)}{2}  \\

\rm \:  \frac{x}{2}( {n}^{2} + n) - n< [x] + [2x] + \cdots + [nx] \leqslant  \frac{x}{2}( {n}^{2} + n)\\

can be further rewritten as by dividing each term by n^2.

\rm \: \dfrac{x}{2} \bigg(1 + \dfrac{1}{n}  \bigg)  - \dfrac{1}{n}  < \dfrac{[x] + [2x] + \cdots + [nx]}{ {n}^{2} } \leqslant \dfrac{x}{2} \bigg(1 + \dfrac{1}{n} \bigg)\\

On applying limits, we get

\rm \:\displaystyle\lim_{n \to  \infty }\rm \bigg(\dfrac{x}{2} \bigg(1 + \dfrac{1}{n}  \bigg)  - \dfrac{1}{n} \bigg) < \displaystyle\lim_{n \to  \infty }\rm \dfrac{[x] + [2x] + \cdots + [nx]}{ {n}^{2} } \leqslant \displaystyle\lim_{n \to  \infty }\rm \dfrac{x}{2} \bigg(1 + \dfrac{1}{n} \bigg)\\

Now,

\rm \:\displaystyle\lim_{n \to  \infty }\rm \bigg(\dfrac{x}{2} \bigg(1 + \dfrac{1}{n}  \bigg)  - \dfrac{1}{n} \bigg)  =  \frac{x}{2}  \\

and

\rm \:\displaystyle\lim_{n \to  \infty }\rm \dfrac{x}{2} \bigg(1 + \dfrac{1}{n}  \bigg)    =  \frac{x}{2}  \\

So, By squeeze theorem, we have

\color{green}\boxed{ \rm{ \:\rm\implies \:\displaystyle\lim_{n \to  \infty }\rm  \frac{[x] + [2x] + [3x] +\cdots + [nx]}{ {n}^{2} } =  \dfrac{x}{2}}} \\

\rule{190pt}{2pt}

Remark :- Squeeze Theorem or Sandwich Theorem :-

\rm \: If  \: f(x)  \:  \leqslant  \: g(x)  \:  \leqslant  \: h(x)  \: such \: that \\ \rm \:  \displaystyle \lim_{x \:  \to \: a}h(x)   = l \\ and \:  \\ \displaystyle \lim_{x \:  \to \: a}f(x)   = l \\ \rm \: then \\ \rm \: \displaystyle \lim_{x \:  \to \: a}g(x)   = l

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions