Math, asked by ravichandranmonarch, 4 hours ago

Let f={(-1,-8),(1,-2),(2,1),..} be a function from Z to Z defined by f(x)=px+q for some integers p and q determine p and q

Answers

Answered by Barani22
10

Step-by-step explanation:

f={(1,1),(2,3),(0,−1),(−1,−3)}

f(x)=ax+b

(1,1)∈f

⇒f(1)=1

⇒a×1+b=1

⇒a+b=1 .

(0,−1)∈f

⇒f(0)=−1

⇒a×0+b=−1

⇒b=−1

On substituting b=−1 in eqn (1), we get

a+(−1)=1

⇒a=1+1=2

Thus the respective values of a and b are 2 and −1

Answered by pulakmath007
0

The value of p = 3 and q = - 5

Given :

Let f = {(-1,-8) , (1,-2) , (2,1) , ..} be a function from Z to Z defined by f(x) = px + q for some integers p and q

To find :

The value of p and q

Solution :

Step 1 of 2 :

Form the equation to find the value of p and q

Here the given function is

A function from Z to Z defined by f(x) = px + q for some integers p and q

f = {(-1,-8) , (1,-2) , (2,1) , ..}

\displaystyle \sf \therefore \: f( - 1) =  - 8 \:  \:  \: and \:  \:  \: f(1) =  - 2

Now ,

\displaystyle \sf  f( - 1) =  - 8 \:  \: gives

\displaystyle \sf{ \implies }p \times ( - 1) + q =  - 8

\displaystyle \sf{ \implies } - p + q =  - 8 \:  \:  \:  -  -  -  - (1)

Again ,

\displaystyle \sf  f( 1) =  - 2 \:  \: gives

\displaystyle \sf{ \implies }(p \times  1) + q =  - 2

\displaystyle \sf{ \implies } p + q =  - 2 \:  \:  \:  -  -  -  - (2)

Step 2 of 2 :

Find the value of p and q

\displaystyle \sf{  } - p + q =  - 8 \:  \:  \:  -  -  -  - (1)

\displaystyle \sf{  } p + q =  - 2 \:  \:  \:  -  -  -  - (2)

Adding Equation 1 and Equation 2 we get

\displaystyle \sf{2q =  - 10 }

\displaystyle \sf{ \implies }q =  - 5

From Equation 2 we get

\displaystyle \sf  p + ( - 5) =  - 2

\displaystyle \sf{ \implies }p - 5 =  - 2

\displaystyle \sf{ \implies }p =  - 2 + 5

\displaystyle \sf{ \implies }p = 3

Hence value of p = 3 and q = - 5

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If p(x) = 2x + 1, then find p( -1)

https://brainly.in/question/20224817

2. if polynomial p(t)=t⁴-t³+t²+6,then find p(-1)

https://brainly.in/question/3539645

#SPJ2

Similar questions