let f ( -10,10)-> R , where f(x)= sinx + (x square/ a) be an odd function then the set of value of parameter a is /an
Answers
Answered by
1
Given : f : (-10, 10) → R , where f(x) = sinx + (x²/a) be an odd function.
To find : The set of value of parameter a.
solution : a function, y = f(x) will be an odd function only if f(-x) = - f(x)
here f(x) = sinx + (x²/a)
⇒f(-x) = sin(-x) + [(-x)²/a ] = - sinx + x²/a
⇒-f(x) = - sinx - x²/a
so, f(-x) = - f(x)
⇒-sinx + x²/a = - sinx - x²/a
⇒2x²/a = 0
⇒x²/a = 0
as domain of function, x ∈ (-10, 10) , a ≠ 0 at x = 0
Therefore, value of a ≠ 0, in the domain of function.
also read similar questions : If f(x)=3cosx + x (sinx) +1 show that f(x) is even or odd function
https://brainly.in/question/14263114
find the domain of f(x)=√sinx
https://brainly.in/question/12678122
Similar questions