Math, asked by dkdiyasree, 22 hours ago

let f and g be the two functions from R to R defined by f(x)=3x-4 and g(x)=x³+3.find g o f and f o g​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = 3x - 4

and

\rm :\longmapsto\:g(x) =  {x}^{3} + 3

Now, Consider

\rm :\longmapsto\:g \: o \: f

\rm \:  =  \:g \: o \: f \: (x)

\rm \:  =  \:g\bigg(f(x)\bigg)

\rm \:  =  \:g\bigg(3x - 4\bigg)

\rm \:  =  \: {(3x - 4)}^{3} + 3

\rm \:  =  \: {(3x)}^{3} - 3 {(3x)}^{2}(4) + 3(3x)( {4)}^{2}  -  {4}^{3} + 3

\rm \:  =  \: {27x}^{3} - 108 {x}^{2} + 144x - 64 + 3

\rm \:  =  \: {27x}^{3} - 108 {x}^{2} + 144x - 61

\rm :\longmapsto\:\boxed{ \bf{ \: g \: o \: f(x) =  \: {27x}^{3} - 108 {x}^{2} + 144x - 61}}

Now, Consider

\rm :\longmapsto\:f \: o \: g

\rm \:  =  \:\:f \: o \: g \: (x)

\rm \:  =  \:f\bigg(g(x)\bigg)

\rm \:  =  \:f\bigg( {x}^{3}  + 3\bigg)

\rm \:  =  \:3( {x}^{3} + 3) - 4

\rm \:  =  \:3{x}^{3} + 9 - 4

\rm \:  =  \:3{x}^{3} + 5

\rm :\longmapsto\:\boxed{ \bf{ \: f \: o \: g(x) =  \:3{x}^{3} + 5}}

Additional Information :-

 \boxed{ \bf{ \:f o g (x) = x \: \bf\implies \:g(x) =  {f}^{ - 1}(x)}}

 \boxed{ \bf{ \:g o f (x) = x \: \bf\implies \:f(x) =  {g}^{ - 1}(x)}}

Similar questions