Let f be a function such that f(f(x)) = f(x + 13) 18 for all integers x. If f (241) = 259 and f(259) = 254, then f(267) is?
Answers
Answer:
The answer is 308.
Step-by-step explanation:
We are given:
f(f(x) = f(x+13)-18
and
f(241) = 259
f(259) = 254
We need to find f(267):
First we put x = 241.
f(f(241))= f(241+13)-18
f(259)=f(254)-18
254+18=f(254)
272=f(254)----------(1)
Similarly,
we'll put x = 259.
f(f(259))=f(259+13)-18
f(254)=f(272)-18
Using eqation (1), we get
272+18=f(272)
290=f(272)------------(2)
Now, we'll put x = 254.
f(f(254))=f(254+13)-18
f(272)=f(267)-18
Using equation (2), we get
290=f(267)-18
290+18=f(267)
308=f(267)
Hence, the value of f(267) = 308.
Answer:
308
Step-by-step explanation:
f(241) = 259 (Given) ---1
f(259) = 254 (Given) --- 1
Let f be the function such that f(f(x)) = f(x + 13) - 18
Putting x = 241
= ff(241) = f(241 + 13) - 18
f(259) = f(254) - 18 ( eq 1)
254 + 18 = f(254) ( eq 2)
f(254) = 272 ---3
Putting x = 259
= ff(259) = f(259 + 13) - 18
= f(254) = f(272) - 18 ( eq 2)
= 272 + 18 = f(272) ( eq 3)
= f(272) = 290
Putting x = 254.
ff(254) = f(254+13)-18
f(272)=f(267)-18
Using equation (2), we will get -
290 = f(267)-18
290+18 = f(267)
308 = f(267)
Therefore, the value of f(267) = 308.