Math, asked by tjfkroerhtntm, 21 days ago

Let f be a function with the following properties:
(i) f(1) = 1

(ii) f(2n) = n.f(n) for any positive integer n.

What is the value of f(2¹⁰⁰) ?

(A) 2⁵⁰⁵⁰

(B) 2⁹⁹

(C) 2¹⁰⁰

(D) 2⁴⁹⁵⁰

Answer with proper explanation.

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that,

\rm \: f(1) = 1 \\

and

\rm \: f(2n) = nf(n) \:  \:  \:  \forall \: n \:  \in \: positive \: integer \\

Now, Consider

\rm \: f(2)

\rm \: =  \: f(2 \times 1) \\

\rm \: =  \: 1 \times f(1) \\

\rm \: =  \: 1

\rm \: =  \:  {2}^{0}  \\

Thus,

\rm\implies \:\boxed{\sf{  \:\rm \: f(2) =  {2}^{0} \:  \: }} \\

Now, Consider

\rm \: f( {2}^{2} )

\rm \: =  \: f(4) \\

\rm \: =  \: f(2 \times 2) \\

\rm \: =  \: 2f(2) \\

\rm \: =  \: 2 \times 1 \\

\rm \: =  \: 2 \\

Thus,

\rm\implies \:\boxed{\sf{  \:\rm \: f( {2}^{2} ) =  {2}^{1} \:  \: }} \\

Now, Consider

\rm \: f( {2}^{3} ) \\

\rm \: =  \: f(8) \\

\rm \: =  \: f(2 \times 4) \\

\rm \: =  \: 4f(4) \\

\rm \: =  \: 4 \times 2 \\

\rm \: =  \: 8 \\

\rm \: =  \:  {2}^{3} \\

Thus,

\rm\implies \:\boxed{\sf{  \:\rm \: f( {2}^{3} ) =  {2}^{3} =  {2}^{1 + 2}  \:  \: }} \\

Now, Consider

\rm \: f( {2}^{4} ) \\

\rm \: =  \: f(16) \\

\rm \: =  \: f(2 \times 8) \\

\rm \: =  \: 8f(8) \\

\rm \: =  \: 8 \times  {2}^{1 + 2}  \\

\rm \: =  \:  {2}^{3} \times  {2}^{1 + 2}   \\

\rm \: =  \:  {2}^{1 + 2 + 3}   \\

Thus,

\rm\implies \:\boxed{\sf{  \:\rm \: f( {2}^{4} ) =  {2}^{1 + 2 + 3} \:  \: }} \\

So, we have by symmetry,

\begin{gathered}\boxed{\begin{array}{c|c} \bf n & \bf f(2n) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {2}^{2}  & \sf  {2}^{1}  \\ \\ \sf  {2}^{3}  & \sf  {2}^{1 + 2}  \\ \\ \sf  {2}^{4}  & \sf  {2}^{1 + 2 + 3}  \end{array}} \\ \end{gathered} \\

Now, Consider

\rm \: f( {2}^{100} ) \\

can be rewritten as

\rm \: =  \:  {2}^{1 + 2 + 3 +  -  -  -  + 99}  \\

We know,

\boxed{\sf{  \:1 + 2 + 3 +  -  -  -  + n =  \frac{n(n + 1)}{2}  \:  \: }} \\

So, using this result, we get

\rm \: =  \:  {\bigg(2 \bigg) }^{\dfrac{99(99 + 1)}{2} }  \\

\rm \: =  \:  {\bigg(2 \bigg) }^{\dfrac{99(100)}{2} }  \\

\rm \: =  \:  {\bigg(2 \bigg) }^{\dfrac{99(50)}{1} }  \\

\rm \: =  \:  {2}^{4950}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: f( {2}^{100} ) \:  =  \:  {2}^{4950}  \:  \: }} \\

So, option (D) is correct.

Similar questions