Math, asked by BrainlyHelper, 1 year ago

Let f, g and h be functions from R to R. Show that

(f + g) oh = foh + goh
(f . g) oh = (foh) . (goh)

Answers

Answered by abhi178
4
(i) (f + g)oh = foh + goh
\textbf{Let us consider ((f + g)oh)(x) = (f + g)(h(x))}
= f(h(x)) + g(h(x))\\= (foh)(x) + (goh)(x)\\= \{(fog) + (goh)\}(x)
Then, ((f + g)oh)(x) = {(foh) +(goh)}(x) ∀ x ϵ R
\textbf{Therefore, (f + g)oh = foh + goh.}

(ii) (f.g)oh = (foh).(goh)
\textbf{Let us consider ((f.g)oh)(x) = (f.g)(h(x))}
= f(h(x)).g(h(x))\\= f (h(x)).g(h(x))\\= (fog)(x).(goh)(x)\\= \{(fog).(goh)\}(x)
Then, ((f.g)oh)(x) = {(fog).(goh)}(x) ∀ x ϵ R
\textbf{Therefore, (f.g)oh = (fog).(goh)}
Similar questions