Math, asked by lucky282922, 9 months ago

Let f, g: R → R be defined, respectively by f(x) = x + 1, g(x) = 2x – 3. Find f + g, f – g and f/g.​

Answers

Answered by ITZINNOVATIVEGIRL588
10

━━━━━━━━━━━━━━━━━━━━━━━━━

\Large\fbox{\color{purple}{QUESTION}}

Let f, g: R → R be defined, respectively by f(x)

= x + 1, g(x) = 2x – 3. Find f + g, f – g and f/g.

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf\Huge\red{\mid{\overline{\underline{ ANSWER }}}\mid }

➡️Given, the functions f, g: R → R is defined as

➡️f(x) = x + 1, g(x) = 2x – 3

➡️Now,

➡️(f + g) (x) = f(x) + g(x) = (x + 1) + (2x – 3) = 3x – 2

➡️Thus, (f + g) (x) = 3x – 2

➡️(f – g) (x) = f(x) – g(x) = (x + 1) – (2x – 3) = x + 1 – 2x + 3 = – x + 4

➡️Thus, (f – g) (x) = –x + 4

➡️f/g(x) = f(x)/g(x), g(x) ≠ 0, x ∈ R

➡️f/g(x) = x + 1/ 2x – 3, 2x – 3 ≠ 0

➡️Thus, f/g(x) = x + 1/ 2x – 3, x ≠ 3/2

\Large\mathcal\green{FOLLOW \: ME}

\Large\mathcal\green{FOLLOW \: ME} ━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by pulakmath007
4

\huge\boxed{\underline{\underline{\green{\tt Solution}}}} </p><p>

Here f, g: R → R be defined

  •  f(x) = x + 1

  • g(x) = 2x – 3

Now

(f + g)(x)

= f(x) + g(x)

 = (x + 1) + (2x  -  3)

 = 3x  - 2

AGAIN

(f - g)(x)

 = f(x) - g(x)

 = (x + 1) - (2x  -  3)

 = x + 1 - 2x  + 3

 =  - x  + 4

Now

g(x) = 2x+3 \:  vanishes \:  at  \: x =   \frac{3}{2} </strong></p><p><strong>[tex]g(x) = 2x+3 \:  vanishes \:  at  \: x =   \frac{3}{2}

so \: the \: domain \:  \frac{f}{g}  \: is \: R -  \{  \frac{3}{2} \}

 (\frac{f}{g} \: ) (x)

=  \frac{f(x)}{g(x)}

 =  \frac{x  + 1}{2x - 3}

Therefore

f+g: R → R is defined by (f+g) (x) = 3x-2

f-g: R → R is defined by (f-g) (x) = - x+4

 \frac{f}{g} : R  - \{  \frac{3}{2} \} → R \:  is  \: defined  \:  by  \: ( \frac{f}{g} ) (x) =  \frac{x  +  1}{2x - 3}

</p><p></p><p>\displaystyle\textcolor{red}{Please \:  Mark \:  it  \: Brainliest}

Similar questions