Math, asked by dinesh7870, 4 months ago

..Let f: IR→IR be defined by f(x) = 1 - 1x| then the range of fis​

Answers

Answered by Anonymous
11

 \bf \LARGE \color{pink}{Hola! }

GiveN :

Function f is defined,

 \rightsquigarrow \sf \: f : R \to  R \\

\rightsquigarrow \sf f(x) = 1 -  |x|

To FinD :

 \sf \rightsquigarrow \: Range \:  \:  of  \:  \: function

SolutioN :

 \tt \star \:  \:   \: { \underline{\underline{Domain \:  \:  of \:  \:  function (D_f) \:  : }}}

  • For any real value of x function is defined to R
  • Hence,
  • { \underline {\boxed {\sf x \in \: R}}}

 \tt \star \:  \:   \: { \underline{\underline{Range \:  \:  of \:  \:  function (R_f) \:  : }}}

  • we Know,
  •  \sf \: |x| \geqslant 0
  • Substituting +ve and -ve value of x we will always get +ve value of f(x) . For of non positive-negative number, [0] we will get 0 as an output. Hence, highest value of f(x) is 1 [ when x= 0 ]

  • {\underline{\boxed{\sf \:f(x) \in \: [ \: 1 \: ,  \: \infty \:  )}}}

ConcepT BoosteR :

→ For better understanding let's have a look in the GRAPHICAL REPRESENTATION of this function

{ \underline{ \underline{ \mathbb{GRAPH \:  \:  IS \:  \:  ATTACHED  \:  \: IN  \:  \: PHOTO}}}}

______________

HOPE THIS IS HELPFUL...

\tt\fcolorbox{skyblue}{skyblue}{@StayHigh}

Attachments:
Similar questions