Let f:R→R and g:R→R be the two non constant differentiable functions. if f'(x) = g'(x) for all values of x belonging to real numbers and f(1) = g(2) = 1. Which of the following statements are true?
(a) f(2) < 1 - log(2)
(b) g(2) < 1 - log(2)
(c) g(2) > 1 - log(2)
(d) f(2) > 1 - log(2)
Answers
Answered by
19
Now we will integrate :-
Now , we know that :-
If a+b = p and a , b and p are positive numbers then a< p and b <p
Therefore , option (d) is correct
Answered by
6
Answer:
f′(x)=e(f(x)−g(x))g′(x)∀xϵR
⇒e−f(x)⋅f′(x)−e−g(x)g′(x)=0
⇒∫(e−f(x)f′(x)−e−g(x)⋅g′(x))dx=C
⇒−e−f(x)+e−g(x)=C
⇒−e−f(1)+e−g(1)=−e−f(2)+e−g(2)
⇒−e1+e−g(1)=−e−f(2)+e1
⇒e−f(2)+e−g(1)=e2
∴ e−f(2)<e2 and e−g(1)<e2
⇒−f(2)<loge2−1 and −g(1)<loge2−1
⇒f(2)>1−loge2 and g(1)>1−loge2.
Similar questions