Math, asked by Anonymous, 3 months ago

Let f:R→R and g:R→R be the two non constant differentiable functions. if f'(x) = \sf e^{[f(x) - g(x)]}g'(x) for all values of x belonging to real numbers and f(1) = g(2) = 1. Which of the following statements are true?
(a) f(2) < 1 - log(2)
(b) g(2) < 1 - log(2)
(c) g(2) > 1 - log(2)
(d) f(2) > 1 - log(2)

Answers

Answered by Asterinn
19

 \rm  \longrightarrow f'(x) =  e^{ [f(x) - g(x)]}g'(x) \\  \\   \rm  \longrightarrow f'(x) =  e^{f(x)} \times e^{ - g(x)}  \times g'(x)\\  \\   \rm  \longrightarrow  \dfrac{f'(x) }{e^{f(x)}} =    e^{ - g(x)}  \times g'(x)e^{f(x)}\\  \\   \rm  \longrightarrow f'(x)  \times e^{ - f(x)}=   e^{ - g(x)}  \times g'(x) \\   \\   \rm  \longrightarrow f'(x)  \: e^{ - f(x)} - e^{ - g(x)} \: g'(x) = 0

Now we will integrate :-

  \rm  \longrightarrow  \displaystyle \int \rm f'(x)  \: e^{ - f(x)} - e^{ - g(x)} \: g'(x) =\displaystyle \int \rm 0 \\  \\  \\ \rm  \longrightarrow  \displaystyle \int \rm f'(x)  \: e^{ - f(x)} - \displaystyle \int \rm e^{ - g(x)} \: g'(x) = constant(c) \\  \\  \\ \rm let  \:  \: g(x) = t \:  and \:  f(x) = m\: \\  \rm \: g'(x)dx = dt \: and \: f'(x) = dm

  \longrightarrow \displaystyle \int  \rm {e}^{ - m} dm - \displaystyle \int  \rm {e}^{ - t} dt = c \\  \\ \longrightarrow \displaystyle  \rm  - {e}^{ - m} + c_1 +  \displaystyle  \rm {e}^{ - t} + c_2 = c \\  \\  \rm \: c  - c_1  -  c_2 = c_t \: (c_t \: is \: constant)\\  \\ \longrightarrow \displaystyle  \rm  - {e}^{ - m}  +  \displaystyle  \rm {e}^{ - t}  =c_t

\longrightarrow \displaystyle  \rm  - {e}^{ - f(x)}  +  \displaystyle  \rm {e}^{ - g(x)}  =c_t \\  \\   \boxed{ \bf f(1) = g(2) = 1} \\  \\  \\ \longrightarrow \displaystyle  \rm  - {e}^{ - f(1)}  +  \displaystyle  \rm {e}^{ - g(1)}  =c_t\\  \\  \\ \longrightarrow \displaystyle  \rm  - {e}^{ - f(2)}  +  \displaystyle  \rm {e}^{ - g(2)}  =c_t\\  \\  \\ \longrightarrow \displaystyle  \rm  - {e}^{ - f(1)}  +  \displaystyle  \rm {e}^{ - g(1)}  =\rm  - {e}^{ - f(2)}  +  \displaystyle  \rm {e}^{ - g(2)}  =c_t\\  \\  \\ \longrightarrow \displaystyle  \rm  - {e}^{ - f(1)}  +  \displaystyle  \rm {e}^{ - g(1)}  =\rm  - {e}^{ - f(2)}  +  \displaystyle  \rm {e}^{ - g(2)}  \\  \\  \\ \longrightarrow \displaystyle  \rm  - {e}^{  - (1)}  +  \displaystyle  \rm {e}^{ - g(1)}  =\rm  - {e}^{ - f(2)}  +  \displaystyle  \rm {e}^{ - 1}  \\  \\  \\ \longrightarrow \displaystyle  \rm    \displaystyle  \rm {e}^{ - g(1)}  + {e}^{ - f(2)}   =\rm   \displaystyle  \rm 2{e}^{ - 1} \\  \\  \\ \longrightarrow \displaystyle  \rm    \displaystyle  \rm {e}^{ - g(1)}  + {e}^{ - f(2)}   =\rm   \displaystyle  \rm  \frac{2}{{e} }

Now , we know that :-

If a+b = p and a , b and p are positive numbers then a< p and b <p

 \therefore \:   \rm {e}^{ - f(2)}  &lt;  \dfrac{2}{e}  and \: {e}^{ - g(1)}  &lt;  \dfrac{2}{e}

\therefore   \rm {e}^{ - f(2)}  &lt;  \dfrac{2}{e}   \\\rightarrow \rm ln \:  {e}^{ - f(2)}  &lt;  ln \dfrac{2}{e}  \\ \rightarrow\rm { - f(2)} \: ln \:  {e}  &lt;  ln{2}-ln \: e \\ \rightarrow\rm { - f(2)}   &lt;  ln{2}-1\\  \boxed{\rightarrow\rm { f(2)}    &gt;   1 - ln2}

 \rm \rightarrow {e}^{ - g(1)}  &lt;  \dfrac{2}{e}     \\\rightarrow \rm ln \:  {e}^{ - g(1)}  &lt;  ln \dfrac{2}{e}  \\ \rightarrow\rm { - g(1)} \: ln \:  {e}  &lt;  ln{2}-ln \: e \\ \rightarrow\rm { - g(1)}   &lt;  ln{2}-1\\  \boxed{\rightarrow\rm { g(1)}    &gt;   1 - ln2}

Therefore , option (d) is correct

Answered by gurmanpreet1023
6

Answer:

f′(x)=e(f(x)−g(x))g′(x)∀xϵR

⇒e−f(x)⋅f′(x)−e−g(x)g′(x)=0

⇒∫(e−f(x)f′(x)−e−g(x)⋅g′(x))dx=C

⇒−e−f(x)+e−g(x)=C

⇒−e−f(1)+e−g(1)=−e−f(2)+e−g(2)

⇒−e1+e−g(1)=−e−f(2)+e1

⇒e−f(2)+e−g(1)=e2

∴ e−f(2)<e2 and e−g(1)<e2

⇒−f(2)<loge2−1 and −g(1)<loge2−1

⇒f(2)>1−loge2  and  g(1)>1−loge2.

Similar questions
Math, 9 months ago