Math, asked by 16x51a0512, 2 months ago

Let f: R → R, determine whether f is invertible, and if so, determine f

-1

, where f = {(x,

y)|2x+3y = 7}.​

Answers

Answered by pulakmath007
3

SOLUTION

Let f: R → R , where f = {(x, y) | 2x+3y = 7}.

TO DETERMINE

whether f is invertible, and if so, determine

 \sf{ {f}^{ - 1} }

EVALUATION

Here it is given that

f: R → R, , where f = {(x, y) | 2x+3y = 7}.

\displaystyle\sf{2x + 3y = 7}

\displaystyle\sf{ \implies \: y =  \frac{7 - 2x}{3} }

\displaystyle\sf{ \implies \: f(x) =  \frac{7 - 2x}{3} }

CHECKING FOR ONE TO ONE

Let a, b R such that

f(a) = f(b)

\displaystyle\sf{ \implies \:   \frac{7 - 2a}{3}  = \frac{7 - 2b}{3} }

\displaystyle\sf{ \implies \:   {7 - 2a} = {7 - 2b}}

\displaystyle\sf{ \implies \:  a = b}

So f is one to one

CHECKING FOR ONTO

Clearly every element in the codomain set has a preimage in the domain set

So f is onto

So f is bijective

So f is invertible

\displaystyle\sf{Let \:  \:  {f}^{ - 1}(x) = y }

\displaystyle\sf{ \implies  \:  \:  f(y) = x }

\displaystyle\sf{ \implies \:   \frac{7 - 2y}{3}  = x }

\displaystyle\sf{ \implies \:   7 - 2y  = 3x }

\displaystyle\sf{ \implies \:   - 2y  = 3x - 7 }

\displaystyle\sf{ \implies \:   2y  = 7 - 3x  }

\displaystyle\sf{ \implies \:   y  =  \frac{7 - 3x}{2}   }

\displaystyle\sf{ \implies \:     {f}^{ - 1}(x)  =  \frac{7 - 3x}{2}   }

FINAL ANSWER

\displaystyle\sf{    {f}^{ - 1}(x)  =  \frac{7 - 3x}{2}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Lim x--a (f(x) - f(a))/(x-a) gives

https://brainly.in/question/35766042

2. Lim x→0 (log 1+8x)/x

https://brainly.in/question/18998465

Similar questions