Math, asked by harshhvstech1975, 5 hours ago

Let f:R to R be defined by f(x) = 3x²-5 and g:R to R be defined as g(x)=3x, find gof(-2)​

Answers

Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:f : R \:  \to \: R

\rm :\longmapsto\:g : R \:  \to \: R

defined as

\rm :\longmapsto\:f(x) =  {3x}^{2} - 5

\rm :\longmapsto\:g(x) =  3x

 \purple{\large\underline{\sf{To\:Find - }}}

\rm :\longmapsto\:gof( - 2)

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:f : R \:  \to \: R

defined as

\rm :\longmapsto\:f(x) =  {3x}^{2} - 5

and

\rm :\longmapsto\:g : R \:  \to \: R

defined as

\rm :\longmapsto\:g(x) =  3x

Now, Consider

\rm :\longmapsto\:gof( - 2)

 \rm \:  =  \: g[f( - 2)]

 \rm \:  =  \: g\bigg[3 {( - 2)}^{2}  - 5\bigg]

 \rm \:  =  \: g\bigg[3  \times 4  - 5\bigg]

 \rm \:  =  \: g\bigg[12  - 5\bigg]

 \rm \:  =  \: g\bigg[7\bigg]

 \rm \:  =  \: 3 \times 7

 \rm \:  =  \: 21

Hence,

\sf\implies \: \boxed{\tt{ \:gof( - 2) \:  =  \: 21 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

1. Modulus function : is defined as

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: when \: x \:  <  \: 0} \\ \\  &\sf{ \:  \:x \:  \:  \:when \:  x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Domain \:  =  \: ( -  \infty , \infty )}  \\ \\ &\sf{Range \: [0, \infty )} \end{cases}\end{gathered}\end{gathered}

2. Signum Function :- is defined as

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: sgn(x) =  \dfrac{ |x| }{x}  = \begin{cases} &\sf{ - 1 \:  \: when \: x \:  <  \: 0}\\ \\  &\sf{ \:  \:0 \:  \:  \:when \:  x = 0} \\ \\  &\sf{ \:  \:1 \:  \:  \:when \:  x  >  0} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{Domain \:  =  \: ( -  \infty , \infty )}  \\ \\ &\sf{Range \:  \{ - 1,0,1 \}} \end{cases}\end{gathered}\end{gathered}

Similar questions