Math, asked by prabhbangar498, 8 months ago

Let f(x) = 2x3 – 3x2 – 12x + 15 on (-2,4]. The relative
maximum occurs at x =​

Answers

Answered by pulakmath007
8

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO CALCULATE

The relative maximum for f(x) on the interval ( - 2,4 ]

Where

 \sf{ f(x) = 2 {x}^{3} - 3 {x}^{2}  - 12x + 15 \:  \: }

CALCULATION

Here

 \sf{ f(x) = 2 {x}^{3} - 3 {x}^{2}  - 12x + 15 \:  \: }

Differentiating both sides with respect to x two times we get

 \sf{f'(x)= \: 6 {x}^{2} - 6x - 12  \: }

and

 \sf{f''(x)= 12x - 6\: }

Now for extremum value of f(x) we have

 \sf{f \: '(x)= 0\: }

 \implies \sf{ 6 {x}^{2}  - 6x - 12 = 0\: }

 \implies \sf{  {x}^{2}  - x - 2 = 0\: }

 \implies \sf{  {x}^{2}  -2 x  + x- 2 = 0\: }

 \implies \sf{  x(x - 2) + 1( x- 2) = 0\: }

 \implies \sf{  (x - 2)( x + 1) = 0\: }

 \implies \sf{x =  - 1 \:  \: , \:  \: 2 }

Now

 \sf{f''(2)= 24 - 6 = 18 > 0\: }

So f(x) has a minimum value at x = 2

Again

 \sf{f''( - 1)=  - 12 - 6 =  - 18 < 0\: }

So f(x) has a maximum at x = - 1

Hence the maximum value is

 \sf{ f( - 1) = 2 {( - 1)}^{3} - 3 {( - 1)}^{2}  - 12 \times ( - 1) + 15 \:  \: }

  = \sf{ - 2 - 3 + 12 + 15 \: }

  = \sf{27 - 5 \: }

  = \sf{22 \: }

RESULT

Hence the relative maximum for the function

 \sf{ f(x) = 2 {x}^{3} - 3 {x}^{2}  - 12x + 15 \:  \: }

on the interval ( - 2,4 ] occurs at x = - 1 and the maximum value is 22

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

How many binary relations are there on a set S with 9 distinct elements

https://brainly.in/question/21209937

Similar questions