Let f(x) be a polynomial of degree four having extreme values at x=1 and x=2.
Answers
Answered by
0
limx→0(x2+f(x)x2)=3, since , limit exits hence x2+f(x)=ax4+bx3+3x2
⇒ f(x)=ax4+bx3+2x2
⇒ f(x)=4ax3+3bx2+4x
also f(x)=0 at x=1,2
⇒ a=12,b=−2
⇒ f(x)=x42−2x3+2x2
⇒ f(x)=8−16+8=0
Similar questions