Math, asked by digantasur, 9 months ago

let f(x) be an identity fuction and alpha,beta be the roots of the equation x^2-5x+9=0 then the value of f(alpha)+f(beta) is equal to

Answers

Answered by MaheswariS
4

\textbf{Given:}

\text{$\alpha$ and $\beta$ are roots of $x^2-5x+9=0$}

\text{$f(x)$ is an identity function}

\textbf{To find:}

f(\alpha)+f(\beta)

\textbf{Solution:}

\text{Consider,}\,x^2-5x+9=0

x^2-5x=-9

x^2-5x+\frac{5}{4}=-9+\frac{5}{4}

(x-\frac{5}{2})^2=\frac{-31}{4}

x-\frac{5}{2}=\pm\,i\frac{\sqrt{31}}{2}

\implies\,x=\frac{5}{2}\pm\,i\frac{\sqrt{31}}{2}

\implies\,\alpha=\frac{5}{2}+\,i\frac{\sqrt{31}}{2}\;\text{and}\;\beta=\frac{5}{2}-\,i\frac{\sqrt{31}}{2}

\text{Since $f(x)$ is an identity function, we have}

f(\alpha)+f(\beta)

=\alpha+\beta

=\frac{5}{2}+i\frac{\sqrt{31}}{2}+\frac{5}{2}-i\frac{\sqrt{31}}{2}

=\frac{5}{2}+\frac{5}{2}

=5

\therefore\textbf{The value of $\bf\,f(\alpha)+f(\beta)$ is 5}

Find more:

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

The equation whose roots are smaller by 1 than those of 2x2 – 5x + 6 = 0 is 

a) 2x^2– 9x + 13 = 0

b) 2x^2– x + 3 = 0 

c) 2x^2+ 9x + 13 = 0

d) 2x^2 + x + 3 = 0​

https://brainly.in/question/16821146

Similar questions