Math, asked by hey154, 9 months ago


Let f(x) = cos(p)x where p =[a] (where [.] is the G.I.F).If the period of f(x) is 2, then a can lie in
(4,51
[4.5)
(4.5)
(14.15)​

Answers

Answered by shadowsabers03
4

Period of a function f(x) is the least possible positive real number T such that f(T+x)=f(x).

The period of the function f(x)=\cos(mx) is,

\longrightarrow T=\dfrac{2\pi}{|m|}

According to the question,

\longrightarrow f(x)=\cos((p)x)

where p=[a], i.e., greatest integer function of a.

\longrightarrow f(x)=\cos([a]x)

Here, m=[a].

Given that the period of f(x) is \dfrac{\pi}{2}..

\longrightarrow T=\dfrac{\pi}{2}

\longrightarrow \dfrac{2\pi}{|m|}=\dfrac{\pi}{2}

\longrightarrow \dfrac{2}{|\,[a]\,|}=\dfrac{1}{2}

\longrightarrow |\,[a]\,|=4

\longrightarrow[a]=\pm4

But [a]=\alpha\ \iff\ a\in[\alpha,\ \alpha+1)

  • If [a]=-4,\ \ a\in[-4,\ -3).

  • If [a]=4,\ \ a\in[4,\ 5).

Therefore,

\Longrightarrow\underline{\underline{a\in[-4,\ -3)\cup[4,\ 5)}}

Similar questions