Let f(x)=x^3-6x^2+3x+10f(x)=x
3
−6x
2
+3x+10, then choose the set of correct options regarding f(x)f(x).
If x \in [0, 1] \cup (5, \infty)x∈[0,1]∪(5,∞), then f(x)f(x) is positive.
If x \in (-1, 4] \cup (5, \infty)x∈(−1,4]∪(5,∞), then f(x)f(x) is positive.
If x \in (-1, 2) \cup (5, \infty)x∈(−1,2)∪(5,∞), then f(x)f(x) is positive.
If x \in (-\infty, -1] \cup (3, 6)x∈(−∞,−1]∪(3,6), then f(x)f(x) is negative.
If x \in (-\infty, 1] \cup (2, 5)x∈(−∞,1]∪(2,5), then f(x)f(x) is negative.
Answers
Answered by
0
Step-by-step explanation:
If x\in(-1, 2)\cup(5,\infin),x∈(−1,2)∪(5,∞), then f(x)f(x) is positive.
Similar questions