Math, asked by royaldevyadav443, 3 months ago

let { f = (x, x²/1+x²) :x €R } be a function from R to R. Determine the range of f.​

Answers

Answered by mathdude500
3

\large\underline{\bold{Given - }}

 \sf \: Let \:  f =  \bigg(x,\dfrac{ {x}^{2} }{1 +  {x}^{2} }  \bigg), \: x \in \: R \: be \: a \: function \: from \: R \to \: R

\large\underline{\bold{To\:Find - }}

 \sf \: Range \: of \: f

\large\underline{\bold{Concept \: Used - }}

The steps for algebraically finding the range of a function are:

  • Write down y = f(x)

  • solve the equation for x, giving something of the form x = g(y).

  • Find the domain of g(y), and this will be the range of f(x).

Let's do now!!

\large\underline{\bold{Calculation}}

  • Given that

\rm :\longmapsto\:f =  \bigg(x,\dfrac{ {x}^{2} }{1 +  {x}^{2} }  \bigg)

  • To find range of f,

\rm :\longmapsto\:Let \: y \: =  \dfrac{ {x}^{2} }{1 +  {x}^{2} }

\rm :\longmapsto\:y + y {x}^{2}  =  {x}^{2}

\rm :\longmapsto\:y =  {x}^{2} -  y {x}^{2}

\rm :\longmapsto\:y =  {x}^{2} (1 - y)

\rm :\longmapsto\: {x}^{2}  = \dfrac{y}{1 - y}

\rm :\longmapsto\:x =  \sqrt{\dfrac{y}{1 - y} }

So,

\rm :\implies\:x \: is \: defined \: iff \: y \geqslant 0 \: and \: 1 - y > 0

\rm :\implies\:y \geqslant 0 \: and \: y < 1

\rm :\implies\: \boxed{ \bf \: y \in \: [0,1)}

Hence,

\rm :\longmapsto\:Range \: of \: f =  \bigg(x,\dfrac{ {x}^{2} }{1 +  {x}^{2} }  \bigg) \: is \: [0,1)

Similar questions