Math, asked by sanjana4664, 1 month ago

Let f(x) = x2 + 6x + c for all real number x, where c is a real number A value of C for which f(1/3) = 0
have exactly 3 distinct real solution is
(where a, b e N), then find the value of la-bl​

Answers

Answered by kamaldhod1984
0

living things get rid

is the prase and is the sentence

Answered by dikshaagarwal4442
0

Answer:

The value of la-bl​ = 8.6

Step-by-step explanation:

  • Finding the value of c: The given polynomial is: f(x) = x² + 6x + c , where c is a real number.

According to the given condition when x = \frac{1}{3} , then f(\frac{1}{3}) = 0

Putting the value of x in above equation we get,  \frac{1}{3}² + 6(\frac{1}{3}) + c = 0

                                                                                \frac{1}{9} + 2 + c = 0

                                                                                 c + \frac{19}{2} = 0

                                                                                 c = - \frac{19}{2} = -9.5

  • Solve the equation: From the equation, x² + 6x - 9.5 = 0

                                                                    x = \frac{-6 +\sqrt{6^2+4*9.5} }{2} or  \frac{-6 -\sqrt{6^2+4*9.5} }{2}

                                                                   x = 1.3 or -7.3

  The two values are 1.3 and - 7.3.

  So, a = 1.3 and b = -7.3

  a - b = 1.3 - (- 7.3) = 1.3 + 7.3 = 8.6

So, la-bl​ = 8.6

For similar type of problems visit the link given below:

https://brainly.in/question/15773636

https://brainly.in/question/9006659

Similar questions