Let f(x) = x3
- 6x2+9x + 18, then f(x) is strictly increasing in …
A) (-∞, 1) (B) [3,∞) (C) (-∞, 1) ∪[3,∞) (D) (1, 3)
Answers
Answered by
2
Answer:
f
′
(x)=3x
2
−12x+9=3(x
2
−4x+3)=3(x−3)(x−1).
If f(x) is decreasing, then
f
′
(x)<0⇒3(x−3)(x−1)<0
⇒(x−3)(x−1)<0⇒ either x−3>0,x−1<0
⇒x−3<0,x−1>0⇒ either x>3,x<1
⇒x<3,x>1⇒3<x<1 or 1<x<3
⇒x∈(1,3)[∵3<x<1 is not possible
Answered by
3
Answer:
(D) (1,3).
Step-by-step explanation:
f ′ (x)=3x 2 −12x+9=3(x 2−4x+3)=3(x−3)(x−1).
If f(x) is decreasing, then
f ′ (x)<0⇒3(x−3)(x−1)<0
⇒(x−3)(x−1)<0⇒ either x−3>0,x−1<0
⇒x−3<0,x−1>0⇒ either x>3,x<1
⇒x<3,x>1⇒3<x<1 or 1<x<3
⇒x∈(1,3)[∵3<x<1 is not possible].
PLEASE MARK IT AS BRAINLIEST AND FOLLOW ME.
Similar questions