Math, asked by guptaananya2005, 1 month ago

Let f(x+y)=f(x)+f(y)+2xy-1 for all real values of x and y, and f(x) is a differentiable function and f'(0)=sina, prove that f(x)>0​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f(x + y) = f(x) + f(y) + 2xy - 1

and

\rm :\longmapsto\:f'(0) = sina

Now,

By First Principal we have,

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

So, can be rewritten as

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(x + y) - f(x)}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(x) + f(y) + 2xy - 1 - f(x)}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(y) + 2xy - 1}{y}

can be rewritten by rearranging as

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{(f(y) - 1) + 2xy}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(y) - 1}{y} + \displaystyle\lim_{y \to 0} \frac{2xy}{y}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(y) - 1}{y - 0} + \displaystyle\lim_{y \to 0} 2x

\bf :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(y) - 1}{y - 0} +  2x -  -  -  - (1)

Now, from given we have,

 \red{\rm :\longmapsto\:f(x + y) = f(x) + f(y) + 2xy - 1}

On substituting x = y = 0, we get

\rm :\longmapsto\:f(0 + 0) = f(0) + f(0) + 0 - 1

\rm :\longmapsto\:f(0) = 2f(0) - 1

\rm :\longmapsto\:f(0) - 2f(0) =  - 1

\rm :\longmapsto\: - f(0)  =  - 1

 \red{\bf :\longmapsto\: f(0)  = 1}

On substituting this value in equation (1), we get

\bf :\longmapsto\:f'(x) = \displaystyle\lim_{y \to 0} \frac{f(y) - f(0)}{y - 0} +  2x

\rm :\longmapsto\:f'(x) = f'(0) +  2x

\rm :\longmapsto\:f'(x) = sina +  2x

On integrating both sides w. r. t. x, we get

\rm :\longmapsto\:\displaystyle\int \:f'(x)dx = \displaystyle\int \:(sina + 2x)dx

We know,

 \boxed{ \bf{ \: \displaystyle\int \:kdx = kx + c}}

and

 \boxed{ \bf{ \: \displaystyle\int \: {x}^{n}dx =  \frac{ {x}^{n + 1} }{n + 1} + c}}

So, using these, we get

\rm :\longmapsto\:f(x) = x \: sina \:  +  \: 2 \times \dfrac{ {x}^{2} }{2} + c

\rm :\longmapsto\:f(x) = x \: sina \:  +  \:  {x}^{2}  + c

On substituting x = 0, we get

\rm :\longmapsto\:f(0) = 0 \times  \: sina \:  +  \:  {0}^{2}  + c

\rm :\longmapsto\:1 =  c

Thus,

 \purple{\bf :\longmapsto\:f(x) = x \: sina \:  +  \:  {x}^{2}  + 1}

can be rewritten as

\rm :\longmapsto\:f(x) = \:  {x}^{2} + xsina  + 1

Now, its a quadratic equation and we know that for a quadratic polynomial f(x) = ax² + bx + c,

 \boxed{ \bf{ \: If \: a > 0 \: and \:  {b}^{2} - 4ac < 0\bf\implies \:f(x) > 0}}

 \boxed{ \bf{ \: If \: a  <  0 \: and \:  {b}^{2} - 4ac < 0\bf\implies \:f(x)  <  0}}

So, here,

 \red{\rm :\longmapsto\:a = 1}

 \red{\rm :\longmapsto\:b = sina}

 \red{\rm :\longmapsto\:c = 1}

So,

 \red{\rm :\longmapsto\: {b}^{2} - 4ac =  {sin}^{2}a - 4 < 0 \:  \:  \:  \:  \:  \:  \:  \{ - 1 \leqslant sina \leqslant 1 \}}

and

 \red{\rm :\longmapsto\:a = 1 > 0}

\bf\implies \:f(x) > 0

Hence, Proved

Similar questions