Math, asked by poojareddy5588, 9 months ago

let FK(x) =1/k(sin to the power of k x+cos to the power of k x) x belongs to R then F4(x) -F6(x) ​

Answers

Answered by pulakmath007
20

SOLUTION

GIVEN

\displaystyle \sf{ F_k(x)  =  \frac{1}{k} \: ( { \sin}^{k}x +  { \cos}^{k}  x) }

TO DETERMINE

The value of

\displaystyle \sf{ F_4(x)  -  F_6(x) }

EVALUATION

Here it is given that

\displaystyle \sf{ F_k(x)  =  \frac{1}{k} \: ( { \sin}^{k}x +  { \cos}^{k}  x) }

Now

\displaystyle \sf{ F_4(x)  =  \frac{1}{4} \: ( { \sin}^{4}x +  { \cos}^{4}  x) }

\displaystyle \sf{  \implies \: F_4(x)  =  \frac{1}{4} \bigg[{( { \sin}^{2}x +  { \cos}^{2}  x)}^{2}  - 2 { \sin}^{2}x  { \cos}^{2}  x\bigg] }

\displaystyle \sf{  \implies \: F_4(x)  =  \frac{1}{4} \bigg[1 - 2 { \sin}^{2}x  { \cos}^{2}  x\bigg] }

\displaystyle \sf{  \implies \: F_4(x)  =  \frac{1}{4}  -  \frac{1}{2}  { \sin}^{2}x  { \cos}^{2}  x}

Now

\displaystyle \sf{ F_6(x)  =  \frac{1}{6} \: ( { \sin}^{6}x +  { \cos}^{6}  x) }

\displaystyle \sf{  \implies \: F_6(x)  =  \frac{1}{6} \bigg[{( { \sin}^{2}x +  { \cos}^{2}  x)}^{3}  - 3 { \sin}^{2}x  { \cos}^{2}  x( { \sin}^{2}x +  { \cos}^{2}  x)\bigg] }

\displaystyle \sf{  \implies \: F_6(x)  =  \frac{1}{6} \bigg[1  - 3 { \sin}^{2}x  { \cos}^{2}  x\bigg] }

\displaystyle \sf{  \implies \: F_6(x)  =  \frac{1}{6}  -  \frac{1}{2}  { \sin}^{2}x  { \cos}^{2}  x}

Thus

\displaystyle \sf{ F_4(x)  -  F_6(x) }

\displaystyle \sf{  =  \bigg[ \frac{1}{4}   -  \frac{1}{2}  { \sin}^{2}x  { \cos}^{2}  x\bigg]  -\bigg[ \frac{1}{6}   -  \frac{1}{2}  { \sin}^{2}x  { \cos}^{2}  x\bigg]  }

\displaystyle \sf{  =   \frac{1}{4}   -  \frac{1}{2}  { \sin}^{2}x  { \cos}^{2}  x - \frac{1}{6}    +   \frac{1}{2}  { \sin}^{2}x  { \cos}^{2}  x  }

\displaystyle \sf{  =   \frac{1}{4}   -  \frac{1}{6} }

\displaystyle \sf{  =   \frac{3 - 2}{12}   }

\displaystyle \sf{  =   \frac{1}{12}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions