Let I=∫(2x+3)237+4x+5x2.dx =(2x+3)235x2+4x+7.dx Put 2x+3=t ∴2dx=dt ∴dx=2dt Also, x=2t−3 ∴I=∫t235(2t−2)2+4(2t−3)+7.2dt =21∫t235(4t2−6t+9)+2(t−3)+7dt =21∫4t235t2−30t+45+8t−24+28dt =81∫t235t2−22t+49dt =81∫⎝⎛5t21−22t−21+49t−23⎠⎞dt 85∫t21dt−822∫t−21dt+849∫t−23dt =85.⎝⎛t−23⎠⎞t−23−411.⎝⎛t−21⎠⎞t−21+849.⎝⎛t−23⎠⎞t−21+c 125(x+3)23−2112x+3−449.2x+31+c
Answers
Answered by
0
Step-by-step explanation:
Let I=∫
(2x+3)
2
3
7+4x+5x
2
.dx
=
(2x+3)
2
3
5x
2
+4x+7
.dx
Put 2x+3=t
∴2dx=dt
∴dx=
2
dt
Also, x=
2
t−3
∴I=∫
t
2
3
5(
2
t−2
)
2
+4(
2
t−3
)+7
.
2
dt
=
2
1
∫
t
2
3
5(
4
t
2
−6t+9
)+2(t−3)+7
dt
=
2
1
∫
4t
2
3
5t
2
−30t+45+8t−24+28
dt
=
8
1
∫
t
2
3
5t
2
−22t+49
dt
=
8
1
∫
⎝
⎛
5t
2
1
−22t
−
2
1
+49t
−
2
3
⎠
⎞
dt
8
5
∫t
2
1
dt−
8
22
∫t
−
2
1
dt+
8
49
∫t
−
2
3
dt
=
8
5
.
⎝
⎛
t
−
2
3
⎠
⎞
t
−
2
3
−
4
11
.
⎝
⎛
t
−
2
1
⎠
⎞
t
−
2
1
+
8
49
.
⎝
⎛
t
−
2
3
⎠
⎞
t
−
2
1
Similar questions
Chemistry,
9 hours ago
Chemistry,
9 hours ago
Math,
18 hours ago
Social Sciences,
18 hours ago
Math,
8 months ago