Let I©R be compact and continuous then what will that function is definitely will be?
Answers
Answered by
0
Answer:
Here A is the index set and may be finite, countably or uncountably infinite.
Definition 3.8
K⊂X is compact if any open cover of K has a finite subcover. More explicitly, K is compact if whenever K⊂∪α∈AGα, where each Gα is open, there exists a finite number of indices α1,α2,…,αm∈A such that K⊂∪
m
j=1
Gαj. In addition, E⊂X is precompact (or relatively compact) if
¯
E
is compact. If X is a compact set, considered as a subset of itself, then we say X is a compact metric space.
Similar questions
Math,
15 days ago
Social Sciences,
15 days ago
English,
1 month ago
Science,
9 months ago
English,
9 months ago