Let K be an integer and,
Then prove that:
PLZ ANSWER THIS QUESTION AS FAST AS POSSIBLE...FIRST CORRECT ANSWER WITH DETAILED AND CORRECT SOLUTION WILL GET BRAINLIEST
Answers
Sᴏʟᴜᴛɪᴏɴ :-
→ n = ³√[k + √(k² - 1)] + ³√[k - √(k² - 1)] + 1
→ (n - 1) = ³√[k + √(k² - 1)] + ³√[k - √(k² - 1)]
cubing both sides, we get,
→ (n - 1)³ = {³√[k + √(k² - 1)] + ³√[k - √(k² - 1)]}³
using formula Now :-
- LHS :- (a - b)³ = a³ - b³ - 3ab(a - b)
- RHS = (a + b)³ = a³ + b³ + 3ab(a + b)
→ n³ - 1 - 3n(n - 1) = √[k + √(k² - 1)] + √[k - √(k² - 1)] + 3 * √[k + √(k² - 1)] * √[k + √(k² - 1)] * (n - 1)
using (a + b)(a - b) = (a² - b²) in RHS,
→ n³ - 3n² + 3n - 1 = √[k + √(k² - 1)] + √[k - √(k² - 1)] + 3 * { k² - (k² - 1)} * (n - 1)
→ n³ - 3n² + 3n - 1 = √[k + √(k² - 1)] + √[k - √(k² - 1)] + 3 * (n - 1)
→ n³ - 3n² + 3n - 1 = √[k + √(k² - 1)] + √[k - √(k² - 1)] + 3n - 3
→ n³ - 3n² - 1 = √[k + √(k² - 1)] + √[k - √(k² - 1)] - 3
→ n³ - 3n² = √[k + √(k² - 1)] + √[k - √(k² - 1)] - 3 + 1
→ n³ - 3n² = √[k + √(k² - 1)] + √[k - √(k² - 1)] - 2
Now, since k is an integer , any value of k (whether , we put k = 0 , -1 , -2 , + 1, +2 } , we will get an integer on RHS side, as (-2) is an integer .
Hence, we can conclude that, (n³ - 3n²) is an integer.