Let K be the set of all real values of x where the function f(x) = sin|x| - |x| + 2(x - π) cos|x| is not differentiable. Then the set K is equal to:
(A) Φ (en empty set) (B) {π}
(C) {0} (D) {0, π}
Answers
Answer:
Differentiability -
Let f(x) be a real valued function defined on an open interval (a, b) and x\epsilon (a, b).Then the function f(x) is said to be differentiable at x_{\circ } if
\lim_{h\rightarrow 0}\:\frac{f(x_{0}+h)-f(x_{0})}{(x_{0}+h)-x_{0}}
or\:\:\:\lim_{x\rightarrow x_{0}}\:\frac{f(x)-f(x_{0})}{x-x_{0}}
-
Checking differentiability at x=0
for x>0,
f(x)=\sin x-x+2(x-\pi)\cos x
f{}'(x)=\cos x-1+2\cos x-2(x-\pi)\sin x
RHD = f{}'(0+)=1-1+2-2(-\pi)\cdot 0=2
for x<0,
f(x)=-\sin x+x+2(x-\pi)\cos x
f{}'(x)=-\cos x+1+2\cos x-2(x-\pi)\sin x
LHD = f{}'(0-)=-1+1+2-2(-\pi)\cdot 0=2
\because LHD = RHD
differentiable at x = 0 => differentiable everywhere
Option 1)
{0}
Option 2)
\phi (an empty set)
Option 3)
{{\pi}}
Option 4)
{0,{\pi}}
Step-by-step explanation:
Answer:
123456
Step-by-step explanation: