Math, asked by hemant6954, 1 year ago

Let logb(2) = 0.3869, logb(3) = 0.6131, and logb(5) = 0.8982. Using these values, evaluate logb(6).

Answers

Answered by acv49
0

Answer:

Are the numbers in brackets base of log or bracket means multiply ?

Answered by erinna
1

The value of log_b(6) is 1.

Step-by-step explanation:

Given information: \log_b(2)=0.3869,\log_b(3)=0.6131,\log_b(5)=0.8982

Using the given values we need to find the value of log_b(6).

log_b(6)=log_b(2\times 3)

Using the properties of logarithm

log_b(6)=log_b(2)+\log_b(3)         [\because log_a(mn)=log_am+log_an]

Substitute the given values.

log_b(6)=0.3869+0.6131

log_b(6)=1

Therefore, the value of log_b(6) is 1.

#Learn more

The value of log3 9 – log5 625 + log7 343 is

https://brainly.in/question/13261150

Similar questions