Math, asked by jiyak7792, 1 year ago

Let n(a-b)=25+x, n(b-a)=2x and n(a intersection b)=2x if n(a)=2(n(b)) then x is

Answers

Answered by MaheswariS
21

\textbf{Given:}

n(A-B)=25+x,\;n(B-A)=2x,\;n(A{\cap}B)=2x

\bf\;n(A)=n(A-B)+n(A{\cap}B)

\;n(A)=25+x+2x

\implies\bf\;n(A)=25+3x

\bf\;n(B)=n(B-A)+n(A{\cap}B)

n(B)=2x+2x

\implies\bf\;n(B)=4x

\text{Also, }\bf\;n(A)=2[n(B)]

\implies\;25+3x=2(4x)

\implies\;25+3x=8x

\implies\;5x=25

\implies\boxed{\bf\,x=5}

Find more:

If n(A-B)= 33+x, n(A intersection B) = 3x, n(B-A) = 15+4x and

n(A) = n(B). Then find x and n(AUB).​

https://brainly.in/question/13256533#

Answered by rrharishkhanna
0

Answer:

there fore the answer is x=5

Similar questions