Math, asked by vaishali1784, 8 months ago

Let(n) denotes the sum of the digits of n For example s(197) 1 + 9 + 7 = 17. Let s^2 (n) = s(s(n)) and s3 = s(s(s(n)) and so on of s^ 1996 (1996)​

Answers

Answered by shadowsabers03
3

Given that S(n) is the sum of digits of the number n and S^{k+1}(n)=S(S^k(n))=S^k(S(n))\quad\!\forall k\in\mathbb{N}.

But if n is a one digit number, the sum of its digits is equal to the number n itself.

\longrightarrow S(n)=n

and so,

\longrightarrow S^2(n)=S(S(n))

\longrightarrow S^2(n)=S(n)

\longrightarrow S^2(n)=n

And,

\longrightarrow S^3(n)=S(S^2(n))

\longrightarrow S^3(n)=S(n)

\longrightarrow S^3(n)=n

Assume,

\longrightarrow S^k(n)=n\quad\!\forall k\in\mathbb{N}

Let's check if S^{k+1}(n)=n is true.

\longrightarrow S^{k+1}(n)=S(S^k(n))

By our assumption,

\longrightarrow S^{k+1}(n)=S(n)

\longrightarrow S^{k+1}(n)=n

We see it's true, therefore, S^k(n)=n\quad\forall k\in\mathbb{N} if n is a one digit number.

So,

\longrightarrow S^{1996}(1996)=S^{1995}(S(1996))

\longrightarrow S^{1996}(1996)=S^{1995}(1+9+9+6)

\longrightarrow S^{1996}(1996)=S^{1995}(25)

\longrightarrow S^{1996}(1996)=S^{1994}(S(25))

\longrightarrow S^{1996}(1996)=S^{1994}(2+5)

\longrightarrow S^{1996}(1996)=S^{1994}(7)

Since 7 is a one digit number,

\longrightarrow\underline{\underline{S^{1996}(1996)=7}}

Hence 7 is the answer.

Similar questions