Math, asked by StrongGirl, 7 months ago

Let O be the centre of the circle x²+y²=r², where r > √5/2. Suppose PQ is a chord of this circle and the equation of the line passing through P and Q is 2x+4y=5. If the centre of the circumcircle of the triangle OPQ lies on the line x+2y=4, then the value of r is _____

Answers

Answered by EnchantedGirl
36

Method -1 :-

\\

From the figure,

\\

➠ OA = √5 /2   & OC  = 4/√5

\\

➠CQ = OC = 4/√5  & CA = 3/2√5.

\\

\\

By pythagoras theorem,

\\

➠ OQ = √OA² + AQ²

        = OA²+(CQ²-CA²)

\\

➠ √ 5/4 + 16/5 - 9/20  = √4 = 2.

\\

Hence,\boxed{ r = 2.}

\\

_________________________

Method -2:-

\\

From the figure ,

\\

➠  PQ is  hx +ky = r²

\\

Given that,

\\

➠ PQ  : 2x +4y = 5

\\

Therefore,

\\

➠  h/2 = k/4 = r² /5

\\

➠ h = 2r² / 5  &  k = 4r²/5

\\

∴ C = (r² /5 , 2r²/5 )

\\

Hence, C lies on  x+2y = 4

\\

So,

\\

➠ r² /5 + 2 (2r² /5 ) = 4

\\

➠ r² = 4

\\

➠ r = 2.

\\

_______________________

\\

\pink{\boxed{Value\ of \  r = 2.}}

\\

________________________________

Attachments:
Answered by amansharma264
11

ANSWER.

The value of r is = 2.

EXPLANATION.

 \sf :  \implies \: origin \:  = (0,0) \:  \: parallel \: to \: the \: line \:  = 2x + 4y  = 5 \\  \\ \sf :  \implies \: by \: using \: distance \: formula \\  \\ \sf :  \implies \: om \:  =  | \frac{2x + 4y - 5}{ \sqrt{ {2}^{2}   +  {4}^{2} } } |  \\  \\ \sf :  \implies  \: om \:  =  | \frac{2(0) + 4(0) - 5}{ \sqrt{20} } |  =  \frac{5}{2 \sqrt{5} }

\sf :  \implies \: oc \:  =  | \dfrac{x + 2y - 4}{ \sqrt{ {1}^{2}  +  {2}^{2} } } |  \\  \\ \sf :  \implies \: oc \:  =  | \frac{0 + 2(0) - 4}{ \sqrt{5} } |  =  \frac{4}{ \sqrt{5} } \\  \\  \sf :  \implies \: it \: is \: also \: written \: as \:  =  \frac{8}{2 \sqrt{5}  }

\sf :  \implies \: cm \:  = oc \:  -  \: om \\  \\ \sf :  \implies \: cm \:  =  \frac{8}{2 \sqrt{5} }  -  \frac{5}{2 \sqrt{5} }  =  \frac{3}{2 \sqrt{5} } \\  \\  \sf :  \implies \:  {cp}^{2}  =  {co}^{2}  \\  \\ \sf :  \implies \:  {cm}^{2}  +  {pm}^{2}  =  {co}^{2}

\sf :  \implies \:  \dfrac{9}{20}  +  {r}^{2} -   {om}^{2}    =  \dfrac{16}{5}  \\  \\ \sf :  \implies \: \:  \frac{9}{20}   +  {r}^{2}  -  \frac{5}{4}  =  \frac{16}{5}  \\  \\ \sf :  \implies \:  {r}^{2}  =  \frac{16}{5}  +  \frac{5}{4}  -  \frac{9}{20}  \\  \\ \sf :  \implies \:  {r}^{2}  =  \frac{64 + 25 - 9}{20} =  \frac{80}{20} \\  \\   \sf :  \implies \:  {r}^{2}  = 4 \:  \:  \: and \:  \:  \: r \:  = 2

Attachments:
Similar questions