Physics, asked by Saby123, 10 months ago

Let O be the origin, c a given number, and u a given direction (i.e., a unit vector).


Describe geometrically the locus of all points P in space that satisfy the vector equation
-

OP · u = c|OP| .


In particular, tell for what value(s) of c the locus will be (Hint: divide through by |OP|):


a) a plane

b) a ray (i.e., a half-line)

c) empty​

Answers

Answered by shadowsabers03
18

We're given to discuss about locus of point P in space satisfying the equation,

\longrightarrow\mathbf{OP\cdot \^u}=c\,\mathbf{|OP|}\quad\quad\dots(1)

Let \bf{OP=v.} Let \theta be the angle between vectors \bf{u} and \bf{v.}

Then (1) becomes,

\longrightarrow\mathbf{v\cdot \^u}=c\,\mathbf{|v|}

\longrightarrow\mathbf{\dfrac{v}{|v|}\cdot \^u}=c

\longrightarrow\mathbf{\^v\cdot \^u}=c

\longrightarrow\mathbf{|\^v|\cdot|\^u|\,\cos\theta}=c

Since \bf{\^u} and \bf{\^v} are unit vectors, their magnitude is 1 each. So,

\longrightarrow c=\cos\theta

For the locus being a plane, the angle between vectors should be \sf{90^o.}

\longrightarrow\theta=90^o

Therefore,

\longrightarrow c=\cos90^o

\longrightarrow\underline{\underline{c=0}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\multiput(0,0)(0,40){2}{\line(1,1){20}}\multiput(0,0)(20,20){2}{\line(0,1){40}}\thicklines\put(10,30){\vector(1,0){20}}\put(10,30){\vector(0,1){15}}\put(10.2,30.1){\framebox(2,2)}\put(11,45){\bf{v}}\put(31,30){\bf{u}}\end{picture}

For the locus being a ray, the angle between vectors should be \sf{0^o} or \sf{180^o.}

\longrightarrow\theta=0^o\quad OR\quad\theta=180^o

Therefore,

\longrightarrow c=\cos0^o\quad OR\quad c=\cos180^o

\longrightarrow\underline{\underline{c=\pm1}}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(10,30){\line(1,0){50}}\thicklines\put(10,29){\line(0,1){2}}\put(10,30){\vector(1,0){20}}\put(10,30){\vector(1,0){25}}\put(35,32){\bf{v}}\put(25,32){\bf{u}}\put(61,30){$\dots$}\end{picture}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(-45,30){$\dots$}\put(10,30){\line(-1,0){50}}\thicklines\put(10,30){\vector(1,0){20}}\put(10,30){\vector(-1,0){25}}\put(10,29){\line(0,1){2}}\put(-17,32){\bf{v}}\put(25,32){\bf{u}}\end{picture}

For the locus being empty, it can be possible that,

\longrightarrow\underline{\underline{c\in\mathbb{R}-[-1,\ 1]}}

because c=\cos\theta is not defined under this set.

Answered by chimmochi54
3

 \huge \green \mapsto  \boxed{answer}

Explanation:

Refer to the attachment dear

hope this helps you

Attachments:
Similar questions