Let P(A)=0.4 , P(B)=0.7, P(AUB)=0.8. Find:
1) P(Bc)=
2) P(A-B)=
3) P(AUBc)=
4) P(B/A)=
5) P(Bc/A)=
Answers
Answered by
0
Answer:
P(A∪B)+P(A∩B)=P(A)+P(B)=0.7+0.2=0.9
P(A∩B)=0.2=P(A)P(B)
P(B)=0.9-P(A), P(A)(0.9-P(A))=0.2,
P^2(A)-0.9P(A)+0.2=0
P(A)=½(0.9±√[0.81–0.8])={0.5,0.4}
P(B)=0.9-P(A)={0.4,0.5}, as P(A)>P(B):
P(A)=0.5, P(B)=0.4
Answer : P(A)=0.5, P(B)=0.4
Similar questions