Math, asked by Anonymous, 2 months ago

Let P, Q, R be subsets of a Universal set U.
Prove that (i) Px(QR) =(PxQ)(PxR)
(ii) (P-Q)xR=(PxR)-(QxR)

Answers

Answered by barani79530
0

Step-by-step explanation:

please mark as best answer and thank me

Attachments:
Answered by tushargupta0691
0

Concept

Cartesian product of two sets A and B is defined as the set of ordered pairs (a,b) such that a∈ A and b ∈ B. In set-builder notation,

           A × B = {(a, b) | a ∈ A ∧ b ∈ B}.

Difference of two sets is defined as

       A - B = {x | x ∈ A ∧ x ∉ B}.

Union of two sets A and B is defined as

     A∪B = {x | x ∈ A or x ∈ B}.

Prove

  1. P × (Q ∪ R) = (P × Q) ∪ (P × R)
  2. (P - Q) × R = (P × R) - (Q × R)

Proof

1. Let (p, x) ∈ P × (Q ∪ R)

    ⇒  p ∈ P and x ∈ (Q ∪ R)      (Using the definition of cartesian product)

    ⇒  p ∈ P and (x ∈ Q or x ∈ R)     (Using the definition of union)

    ⇒  (p ∈ P and x ∈ Q) or (p ∈ P and x ∈ R)   (and is distributive over or)

    ⇒  (p, x) ∈ P × Q or (p, x) ∈ P × R   (Using the definition of cartesian product)

    ⇒  (p, x) ∈ (P × Q) ∪ (P × R)      (Using the definition of union)

    ⇒ P × (Q ∪ R) ⊆ (P × Q) ∪ (P × R).

    Let (p, x) ∈ (P × Q) ∪ (P × R)

    ⇒  (p, x) ∈ P × Q or (p, x) ∈ P × R

    ⇒  (p ∈ P and x ∈ Q) or (p ∈ P and x ∈ R)

    ⇒  p ∈ P and (x ∈ Q or x ∈ R)

    ⇒  p ∈ P and x ∈ (Q ∪ R)

    ⇒  (p, x) ∈ P × (Q ∪ R)

    ⇒  (P × Q) ∪ (P × R) ⊆ P × (Q ∪ R).

    If two sets are subsets of each other then the two sets are equal. So,

          P × (Q ∪ R)  =  (P × Q) ∪ (P × R).

     Hence, proved.

2.  Let (x, r) ∈ (P - Q) × R

     ⇔  x ∈ (P - Q) and r ∈ R

     ⇔  (x ∈ P and x ∉ Q) and r ∈ R

     ⇔  (x ∈ P and x ∈ Q') and r ∈ R      (x ∈ U and x ∉ A ⇒ x ∈ U - A = A')

     The above statement is same as

           (x ∈ P and r ∈ R) and (x ∈ Q' and r ∈ R)

     ⇔  (x ∈ P and r ∈ R) and (x ∉ Q and r ∈ R)

     ⇔  x ∈ (P × R) and x ∉ (Q × R)

     ⇔  x ∈ (P × R) - (Q × R)               (Using the definition of set difference)

     ⇒ (P - Q) × R ⊆ (P × R) - (Q × R) and (P × R) - (Q × R) ⊆ (P - Q) × R

     ⇒  (P - Q) × R = (P × R) - (Q × R).

     Hence, proved.

#SPJ2

Similar questions