Math, asked by harshsingh167hs, 11 months ago

Let PQRS be a quadrilateral. If M and N are the
mid points of the sides PO and RS respectively
then prove that PS+QR=2MN.​

Answers

Answered by talhatariq913
0

Answer:

Let \overline{m}, \overline{n}, \overline{p}, \overline{q}, \overline{r}  

m

,  

n

,  

p

​  

,  

q

​  

,  

r

 and  \overline{s}  

s

 be position vectors of M,N,P,Q,RM,N,P,Q,R and SS respectively.

MM and NN are midpoints of PQPQ and RSRS

\therefore \overline {m} = \dfrac {\overline {p} + \overline {q}}{2}∴  

m

=  

2

p

​  

+  

q

​  

 

​  

 and  

\overline {n} = \dfrac {\overline {r} + \overline {s}}{2}  

n

=  

2

r

+  

s

 

​  

 

\overline {PS} + \overline {QR} = \overline {s} - \overline {p} + \overline {r} - \overline {q}  

PS

+  

QR

​  

=  

s

−  

p

​  

+  

r

−  

q

​  

 

= (\overline {r} + \overline {s}) - (\overline {p} + \overline {q})=(  

r

+  

s

)−(  

p

​  

+  

q

​  

)

= 2\overline {n} - 2\overline {m}=2  

n

−2  

m

 

= 2(\overline {n} - \overline {m})=2(  

n

−  

m

)

= 2\overline {MN}=2  

MN

Step-by-step explanation:

Similar questions