Let PS is the bisector of QPR and PT perpendicular to QR. Show that TPS = (q - r)
and Draw its diagram.
Answers
Given; PS is bisector of angle QPR
PT is perpendicular to QR
To Prove; angle TPS = 1/2 (angle Q - angle R)
Solutio; We know that angle QPS = 1/2 angle P
(1) angle Q + angle QPT = 90 degree
angle QPT = 90 degree -angle Q (2) On putting equations (1) and (2)
angle TPS = angle QPS - angle QPT
= 1/2 angle P - ( 90 - angle Q )
= 1/2 angle P - 90 + angle Q
= 1/2 angle P - 1/2 (angle Q + angle P + angle R) + angle Q
= 1/2 angle P - 1/2 angle Q - 1/2 angle P - 1/2 angle R + angle Q
= -1/2 angle Q - 1/2 angle R + angle Q (+ve and -ve 1/2 angle P got cancled )
by takig LCM in angle Q we get
-1/2 angle Q + 2/2 angle Q - 1/2 angle R
(-1/2 + 2/2) angle Q - 1/2 angle R
= 1/2 angle Q - 1/2 angle R
angle TPS = 1/2 ( angle Q -1/2 angle R ) (Hence proved)
i hope it will help u mate
Answer:
Given
△PQR , PS is bisector of ∠P and PT is perpendicular to QR .
To prove
∠TPS=12(∠Q−∠R)
Proof
In △TPS ,
∠TPS+∠PTS+∠ PST=180°
∠TPS+90°+(∠SPR+∠SRP)=180°
(PT is perpendicular to QR and angle PST is exterior angle of triangle PRS)
∠TPS+90°+12∠P+∠R=180°
(PS is bisector)
∠TPS+90°+12(180°−∠Q−∠R)+∠R=180° (Angle sum property of triangle)
∠TPS+90°+90°−12∠Q−12∠R+∠R=180°
∠TPS+180°−12∠Q+12∠R=180°
∠TPS=180°−180°+12∠Q−12∠R
∠TPS=12(∠Q−∠R)
Proved