Math, asked by Manish2308, 8 months ago

Let r be a positive number satisfying r^1/1234) + (r^-1/1234) = 2 ..then find (r^4321)+(r^-4321)??​

Answers

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the identity that :

 \sf{ \: {(a  -  b)}^{2}    =  {a}^{2}  -  2ab +  {b}^{2}  \: }

GIVEN

 \displaystyle  \sf{  {r}^{ \frac{1}{1234}  }+      {r}^{ \frac{ - 1}{1234}  }\:  \:   = 2}

TO DETERMINE

 \displaystyle  \sf{  {r}^{ 4321  }+      {r}^{  - 4321  }\:  \:   }

CALCULATION

Let

 \displaystyle  \sf{ x =  {r}^{ \frac{1}{1234}  } \:  \: }

Then

 \displaystyle  \sf{  \frac{1}{x}    =  {r}^{ \frac{ - 1}{1234}  }\: }

Now

 \displaystyle  \sf{  {r}^{ \frac{1}{1234}  }+      {r}^{ \frac{ - 1}{1234}  }\:  \:   = 2}

 \displaystyle \implies \sf{x +  \frac{1}{x}  = 2}

 \displaystyle \implies \sf{ \frac{ {x}^{2} + 1 }{x}  = 2}

 \displaystyle \implies \sf{  {x}^{2}  + 1 = 2x}

 \displaystyle \implies \sf{  {x}^{2}  - 2x + 1 =0}

 \displaystyle \implies \sf{  {(x - 1)}^{2}   =0}

 \displaystyle \implies \sf{  x  -  1 = 0}

 \displaystyle \implies \sf{  x  = 1}

 \displaystyle \implies \sf{  \displaystyle  \sf{  {r}^{ \frac{1}{1234}   }  = 1\:  \: }}

 \implies \:  \displaystyle  \sf{ r = 1 \:  \: }

Hence

 \displaystyle  \sf{  {r}^{ 4321  }+      {r}^{  - 4321  }\:  \:   }

 =  \displaystyle  \sf{  {(1)}^{ 4321  }+      {(1)}^{  - 4321  }\:  \:   }

 \displaystyle  \sf{ = 1 + 1\:  \:   }

 = 2

RESULT

 \boxed{ \displaystyle  \sf{   \:  \:  \: {r}^{ 4321  }+      {r}^{  - 4321  }\: = 2  } \:  \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If a : b=c:d=e: f= 2:1, then

(a + 2c + 3e) : (5b + 10d + 15f) =?

https://brainly.in/question/23293448

Similar questions