Let R be a relation on the set of all lines in a plane defined by (11, 12) e Rline lı is
parallel to line 12. Show that R is an equivalence relation.
Answers
Step-by-step explanation:
Let L be the set of all lines in XY plane and R be the relation in L defined as R = {(L1, L2): L1 is parallel to L2}. ... ∴R is transitive. Hence, R is an equivalence relation. The set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4
it will help you
Answer:
R = {(L1, L2): L1 is parallel to L2}
R is reflexive as any line L1 is parallel to itself i.e., (L1, L1) ∈ R.
Now,
Let (L1, L2) ∈ R.
⇒ L1 is parallel to L2.
⇒ L2 is parallel to L1.
⇒ (L2, L1) ∈ R
∴ R is symmetric.
Now,
Let (L1, L2), (L2, L3) ∈R.
⇒ L1 is parallel to L2. Also, L2 is parallel to L3.
⇒ L1 is parallel to L3.
∴R is transitive.
Hence, R is an equivalence relation.
The set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4.
Slope of line y = 2x + 4 is m = 2
It is known that parallel lines have the same slopes.
The line parallel to the given line is of the form y = 2x + c, where c ∈R.
Hence, the set of all lines related to the given line is given by y = 2x + c, where c ∈ R.