Math, asked by Sagarrepala4493, 5 hours ago

let r = {(x-y):x,y E w , 2x+y=8} then, find the domin and range of r

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given relation is

\rm :\longmapsto\:R =  \{(x,y) : 2x + y = 8 \:  \forall \: x,y \:  \in \: W \}

So,

\rm :\longmapsto\:2x + y = 8

can be rewritten as

\rm :\longmapsto\: y = 8 - 2x

 \red{ \sf \: When \: x = 0 \:  \implies \: y = 8 - 2 \times 0\bf\implies \:y = 8}

 \green{ \sf \: When \: x = 1 \:  \implies \: y = 8 - 2 \times 1\bf\implies \:y = 6}

 \blue{ \sf \: When \: x = 2 \:  \implies \: y = 8 - 2 \times 2\bf\implies \:y = 4}

 \purple{ \sf \: When \: x = 3 \:  \implies \: y = 8 - 2 \times 3\bf\implies \:y = 2}

 \pink{ \sf \: When \: x = 4 \:  \implies \: y = 8 - 2 \times 4\bf\implies \:y = 0}

Hᴇɴᴄᴇ,

➢ Pair of values of the given relation are shown in the below table.

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 4 \\ \\ \sf 1 & \sf 6 \\ \\ \sf 2 & \sf 4\\ \\ \sf 3 & \sf 2\\ \\ \sf 4 & \sf 0 \end{array}} \\ \end{gathered}}

So, Relation is defined as

 \green{\rm :\longmapsto\:R =  \{(0,8),(1,6),(2,4),(3,2),(4,0) \}}

So,

\red{\bf\implies \: \boxed{ \sf{ \:Domain \: of \: R =  \{0,1,2,3,4 \}}}}

and

\red{\bf\implies \: \boxed{ \sf{ \:Range \: of \: R =  \{0,1,2,3,4 \}}}}

Similar questions