Let R1 and R2 are the remainders e=when the polynomials<br />
f(x) = 4x3+3x2-12ax -5 and g(x) = 2x3+ax2-6x +2 are divided by (x-1) and (x+2) respectively. If 3R1 + R2 + 28 = 0, find the value of a.
Pls answer!! ❤️❤️❤️
Answers
Given,
(x-1)=0
=> x= 1
Putting value of 'x' in f(x), we get
f(X) = 4x^3 +3x^2 -12ax -5
=> f(1) = 4(1)^3 + 3(1)^2 - 12 a(1) -5
= 4+3-12a -5
= 4+3-5 -12a
= 7-5-12a
= 2-12a _______(i)
Given,
(x+2)= 0
x= -2
Putting value of 'x' in f(x), we get
f(x) = 2x^{3} + a x^{2} -6x +2
=> f(-2) =2 (-2)^{3} + a (-2)^{2} - 6(-2) +2
= 2 (-8) +4 a+12 +2
= -16 +12 +2 +4a
= -16 +14 +4a
= -2 +4a __________(ii)
given,
3R1 + R2 +28 = 0
=> 3(2-12a) + (-2+4a) +28 = 0
=> 6-36a +(-2+4a) + 28 = 0
=> 6-2+28-36 a+4a = 0
=> 4+28-36 +4a= 0
=> 32 - 32a = 0
=> -32a = -32
=> a= 1
Therefore, value of a is 1.
Answer:
TheAnsweris
Given,
(x-1)=0
=> x= 1
Putting value of 'x' in f(x), we get
f(X) = 4x^3 +3x^2 -12ax -5
=> f(1) = 4(1)^3 + 3(1)^2 - 12 a(1) -5
= 4+3-12a -5
= 4+3-5 -12a
= 7-5-12a
= 2-12a _______(i)
Given,
(x+2)= 0
x= -2
Putting value of 'x' in f(x), we get
f(x) = 2x^{3} + a x^{2} -6x +2
=> f(-2) =2 (-2)^{3} + a (-2)^{2} - 6(-2) +2
= 2 (-8) +4 a+12 +2
= -16 +12 +2 +4a
= -16 +14 +4a
= -2 +4a __________(ii)
given,
3R1 + R2 +28 = 0
=> 3(2-12a) + (-2+4a) +28 = 0
=> 6-36a +(-2+4a) + 28 = 0
=> 6-2+28-36 a+4a = 0
=> 4+28-36 +4a= 0
=> 32 - 32a = 0
=> -32a = -32
=> a= 1
Therefore, value of a is 1.
\boxed{Hope\:This\:Helps}
HopeThisHelps