Let R1 and R2 be the remainders when f(x)=x^3+2x^2-5ax-7 and g(x)=2x^3+ax^2-6x+2are divided by (x+1)and (x+2) respectively.If 2R1+R2=0.Find the value of a............. QUICK!!!!!!!!!
Answers
Answered by
7
Answer:
a = 1
Step-by-step explanation:
f ( x ) = x³ + 2 x² - 5 a x - 7
When divided by x + 1 :
remainder = f ( - 1 )
⇒ ( - 1 )³ + 2 ( -1 )² - 5 ( - 1 ) a - 7
⇒ - 1 + 2 + 5 a - 7
⇒ 5 a - 6
R1 = 5 a - 6
When g ( x ) is divided by x + 2 , remainder is - 2
f ( - 2 ) = 2 ( -2 )³ + a ( - 2 )² - 6 ( - 2 ) + 2
⇒ - 16 + 4 a + 12 + 2
⇒ 4 a - 2
2 R1 + R2 = 0
⇒ 2 ( 5 a - 6 ) + 4 a - 2 = 0
⇒ 10 a - 12 + 4 a - 2 = 0
⇒ 14 a - 14 = 0
⇒ 14 a = 14
⇒ a = 14/14
⇒ a = 1
The value of a is 1 .
dhyanbk:
R1=5a-6 not 5a-4
Similar questions