Math, asked by ManalishaYesmin, 1 year ago

let S be the sum P be the product and r the sum of reciprokens of n terms of a G.P. P square R to the power n equal to S to the power n


ManalishaYesmin: please give me the answer

Answers

Answered by Anonymous
77

Step-by-step explanation:

Let ' \large{\sf{\red{a}}}' be the first term and ' \large{\sf{\green{r}}}' be the common ratio of G.P

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \therefore S\:=\: \dfrac{a(1-r^n)}{1-r}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf P\:=\: (a)(ar)(ar^2)\dots \dots (ar^{n-1})

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad=\:a^{n}r^{1+2+3+\dots \dots +(n-1)}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad=\:a^{n}r^{\frac{n(n-1)}{2}}\qquad\sf \left[\because\: \sum n\:=\: \dfrac{n(n+1)}{2}\right]

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf R\:=\: \dfrac{1}{a}+ \dfrac{1}{ar}+ \dfrac{1}{ar^2}+ \dots \dots \dfrac{1}{ar^{n-1}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad=\: \dfrac{1}{a} \left[\dfrac{1- \left(\dfrac{1}{r}\right)^n}{1-\dfrac{1}{r}}\right]\sf \:=\: \dfrac{1}{a} \left[\dfrac{\dfrac{r^n-1}{r^n}}{\dfrac{(r-1)}{r}}\right]

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad=\: \dfrac{1}{a}\left[\dfrac{r^{n-1}}{r^n}\times \dfrac{r}{(r-1)}\right] \sf \:=\: \dfrac{(1-r^n)}{ar^{n-1} (1-r)}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf R\:=\: \dfrac{-(1-r^n)}{-(1-r)ar^{n-1}}\:=\: \dfrac{(1-r^n)}{ar^{n-1}(1-r)}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \therefore\dfrac{S}{R}\:=\: \dfrac{\dfrac{a(1-r^n)}{(1-r)}}{\dfrac{(1-r^n)}{ar^{n-1}(1-r)}}\:=\:a^2r^{n-1}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \therefore\left(\dfrac{S}{R}\right)^2\:=\:(a^2r^{n-1})^n</p><p> ‎ ‎ ‎ ‎ ‎ ‎ ‎</p><p></p><p>[tex]\sf \quad=\:a^{2n}r^{n(n-1)}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \quad=\: \left[a^nr^{\dfrac{n(n-1)}{2}}\right]^2

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \therefore\dfrac{S}{R}\:=\:p^2

Answered by srikar03
1

Answer:

Ans is

 {p}^{2}

Similar questions
Math, 7 months ago