Math, asked by reanwo1688, 1 year ago

Let s denot the infinite sum 2+5x+9x2+14x3+20x4+...... Where |x|<1 then s equals

Answers

Answered by rishu6845
24

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by mindfulmaisel
9

Answer:

\text { S equals } \frac{(2-x)}{(1-x)^{3}}

Given Data:

2+5 x+9 x^{2}+14 x^{3}+20 x^{4}+\ldots \ldots

Step 1:

Let us assume S=2+5 x+9 x^{2}+\ldots

S^{\star} x=2 x+5 x^{2}+9 x^{3}+\ldots

Step 2:

\begin{array}{l}{S^{\star} x=2 x+5 x^{2}+9 x^{3}+\ldots} \\ {S(1-x)=2+3 x+4 x^{2}+\ldots} \\ {S(1-x)^{\star} x=2 x+3 x^{2}+4 x^{3}+\ldots .}\end{array}

Step 3:

By Taking x as common factor.

S(1-x)(1-x)=2+x+x^{2}+x^{3}+\cdots=\frac{(2+x)}{(1-x)}

Step 4:

So, S = [2(1-x) + x)]  

\bold{S=\frac{(2-x)}{(1-x)^{3}}}

Similar questions