Math, asked by Anonymous, 9 months ago

Let s denote the semi-perimeter of a triangle ABC in which BC = a, CA = b, AB = c. If a circle touches the sides BC, CA, AB at D, E, F, respectively, prove that BD = s – b.​

Answers

Answered by ᎷíssGℓαмσƦσυs
8

Answer:

According to the question,

A triangle ABC with BC = a , CA = b and AB = c . Also, a circle is inscribed which touches the sides BC, CA and AB at D, E and F respectively and s is semiperimeter of the triangle

To Prove: BD = s – b

Proof:

According to the question,

We have,

Semi Perimeter = s

Perimeter = 2s

2s = AB + BC + AC…. [1]

As we know,

Tangents drawn from an external point to a circle are equal

So we have

AF = AE… [2] [Tangents from point A]

BF = BD ….[3] [Tangents From point B]

CD = CE…. [4] [Tangents From point C]

Adding [2], [3], and [4],

AF + BF + CD = AE + BD + CE

AB + CD = AC + BD

Adding BD both side,

AB + CD + BD = AC + BD + BD

AB + BC – AC = 2BD

AB + BC + AC – AC – AC = 2BD

2s – 2AC = 2BD [From (1)]

2BD = 2s – 2b [as AC = b]

BD = s – b

Hence proved

Answered by Anonymous
7

I HOPE IT'S HELPFUL FOR YOU.

Attachments:
Similar questions