Math, asked by alphaster, 10 months ago

Let's see if you can solve this maths prob​

Attachments:

Answers

Answered by vinitajain62
1

Answer:

see, it can be solved using

( {a + b + c)}^{2} =  {a}^{2}  +  {b}^{2}  +  {c}^{2}   +  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  2ab + 2bc + 2ca

  \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ca}  +  \frac{ {c}^{2} }{ab}  \\  =  \frac{ {a}^{3} +  {b}^{3}  +  {c}^{3}  }{abc}  \\  =  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + \\ c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca)  \\  =  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 0 \times  {a}^{2}  +  \\  {b}^{2}  +  {c}^{2}  - ab - bc - ca \\  =  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 0 \\  =  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc

putting the values of

 {a}^{3}  +  { b}^{3}  +  {c}^{3}  \\  =  \frac{3abc}{abc}  \\  = 3

so mate I solved this problem.

plzz mark me as brainliest...

Similar questions