Math, asked by priyanshsundesha, 4 days ago

Let t = x² + 4x + 9/ X² + 9 X belongs R. If range of values of t is [a, b], then a+b/3 is equal to​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \tt{t= \dfrac{ {x}^{2} + 4x + 9 }{ {x}^{2} + 9 } }

 \sf{ \implies \: t( {x}^{2} + 9) =  {x}^{2} + 4x + 9  }

 \sf{ \implies \: t {x}^{2} + 9t =  {x}^{2} + 4x + 9  }

 \sf{ \implies \: (t  - 1){x}^{2} - 4x + 9t - 9 =   0 }

 \sf{ \implies \: (t  - 1){x}^{2} - 4x + 9(t - 1)=   0 }

Since \sf{x\in \mathbb{R}}, so discriminant of the above quadratic equation will be non-negative

So,

 \sf{ \implies \: ( - 4)^{2}  - 4 \cdot9(t - 1) \cdot(t - 1) \geqslant 0}

 \sf{ \implies \:16  - 4 \cdot9(t - 1)^{2} \geqslant 0}

 \sf{ \implies \:4 \{4  - 9(t - 1)^{2}   \}\geqslant 0}

 \sf{ \implies \:4  - 9(t - 1)^{2}  \geqslant 0}

 \sf{ \implies \: 9(t - 1)^{2} - 4  \leqslant 0}

 \sf{ \implies \: 9t^{2}   - 18t + 9- 4  \leqslant 0}

 \sf{ \implies \: 9t^{2}   - 18t + 5  \leqslant 0}

 \sf{ \implies \: 9t^{2}   - 15t  - 3t+ 5  \leqslant 0}

 \sf{ \implies \: 3t(3t   - 5)  - 1(3t -  5 ) \leqslant 0}

 \sf{ \implies \: (3t - 1)(3t   - 5)   \leqslant 0}

 \sf{ \implies \:3  \bigg(t -  \dfrac{1}{3}  \bigg) \cdot3 \bigg(t   -\dfrac{5}{3}  \bigg)   \leqslant 0}

 \sf{ \implies \:9  \bigg(t -  \dfrac{1}{3}  \bigg)  \bigg(t   -\dfrac{5}{3}  \bigg)   \leqslant 0}

 \sf{ \implies \: \bigg(t -  \dfrac{1}{3}  \bigg)  \bigg(t   -\dfrac{5}{3}  \bigg)   \leqslant 0}

 \sf{ \implies \: t \in \bigg [ \dfrac{1}{3}  ,  \dfrac{5}{3}  \bigg]    }

So,

 \sf{a =  \dfrac{1}{3}  \:  \:  \: and \:  \:  \: b =  \dfrac{5}{3} }

Now,

 \sf{a + b =  \dfrac{1}{3}  + \dfrac{5}{3} }

 \sf{ \implies \: a + b =  \dfrac{1 + 5}{3}   }

 \sf{ \implies \: a + b =  \dfrac{6}{3}   }

 \sf{ \implies \: a + b =  2   }

 \sf{ \implies \:  \dfrac{a + b}{3} =   \dfrac{2}{3}    }

Similar questions