Math, asked by osanmmy, 1 year ago

Let tan(x) - 2/x. Let g(x) = x^2 + 8. What is f(x)*g(y)?

Answers

Answered by kvjkarthik
1

Answer:

(x tan(x) - 2)(y² + 8) / x

Step-by-step explanation:

It is given,

f(x) = tan(x) - 2/x   &   g(x) = x² + 8

Therefore, we have to find the solution for, f(x) * g(y)

∴ f(x) * g(y)

= (tan(x) - 2/x) (y² + 8)

= (x tan(x) - 2)(y² + 8) / x

Answered by MaheswariS
3

Answer:

f[g(x)]=\frac{(x^2+8)\:tan(x^2+8)-2}{x^2+8}

g[f(x)]=\frac{(x\:tanx-2)^2}{x^2}+8

f(x)*g(x)=(\frac{(x\:tanx-2)(x^2+8)}{x})

Step-by-step explanation:

Given:

f(x)=tanx-\frac{2}{x}=\frac{x\:tanx-2}{x}

g(x)=x^2+8

Now,

f[g(x)]

=f[x^2+8]

=\frac{(x^2+8)\:tan(x^2+8)-2}{x^2+8}

g[f(x)]

=g[\frac{x\:tanx-2}{x}]

=(\frac{x\:tanx-2}{x})^2+8

=\frac{(x\:tanx-2)^2}{x^2}+8

f(x)*g(x)

=(\frac{x\:tanx-2}{x})*(x^2+8)

=(\frac{(x\:tanx-2)(x^2+8)}{x})

Similar questions