let (tan3A/tanA)=K,where tan A not equal to 0 and K not equal to 1/3.
what is tan^2 A equal to?
Answers
Answered by
19
Answer:
tan3A/tanA = k
sin3AcosA/cos3AsinA = k
using componendo and dividendo
(sin3AcosA + cos3AsinA). k + 1
------------------------------------- = ---------
sin3AcosA - cos3AsinA. k - 1
sin(3A+A)/sin(3A-A). = (k+1)/(k-1)
sin4A/sin2A = (k+1)/(k-1)
2sin2Acos2A/sin2A = (k+1)/(k-1)
cos2A = (k+1)/2(k-1)
((1-tan^2A)/(1+tan^2A) = (k+1)/(2k-2)
using componendo and dividendo again
(1+tan^2A)-(1-tan^2A)/(1+tan^2A)+(1-tan^2A) = (2k-2)-(k+1)/(2k-2)+(k+1)
2tan^2A/2 = (k-3)/(3k-1)
tan^2A = (k-3)/(3k-1)
Answered by
2
Answer:
Step-by-step explanation:
Attachments:
Similar questions