Math, asked by duragpalsingh, 11 months ago

Let 1 , \alpha_1, \alpha_2........\alpha_k are divisors of number N = 2^{n-1}(2^n-1) where 2^n-1 is prime number and 1 \  \textless \  \alpha_1\  \textless \  \alpha_2 \  \textless \  .......\  \textless \ \alpha_k.

1) Then find the value of k.
2) Find the value of 1 + \dfrac{1}{\alpha_1 } + \dfrac{1}{\alpha_2}.......\dfrac{1}{\alpha_k}

Answers

Answered by jayantsingh94
0

Answer:

Hello ,

here, N = 2^(n-1)(2^n -1)

Given : (2^n -1) is a prime number.

If we put 2^n -1=7

then we get

n=3

so, N = 4 × 7 = 28

since , factors of N=28 are

{ 1, 2 , 4 , 7 ,14 , 28 }

i.e {1, alp1 , alp2 , alp 3,...alp k}

1) Thus , alpk=28

so, k = 5 ans...

2) 1 + 1/alp1 + 1/alp2 +..... + 1/ alp k

= 1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28

= 2 ans...

Thank you! !

# follow me

Answered by Anonymous
0

Step-by-step explanation:

Hello ,

here, N = 2^(n-1)(2^n -1)

Given : (2^n -1) is a prime number.

If we put 2^n -1=7

then we get

n=3

so, N = 4 × 7 = 28

since , factors of N=28 are

{ 1, 2 , 4 , 7 ,14 , 28 }

i.e {1, alp1 , alp2 , alp 3,...alp k}

1) Thus , alpk=28

so, k = 5 ans...

2) 1 + 1/alp1 + 1/alp2 +..... + 1/ alp k

= 1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28

= 2 ans...

Thank you! !

# follow me

Similar questions