Let , where 0 ≤ θ ≤ 2π. Then
A. Det (A) = 0
B. Det (A) є (2, [infinity])
C. Det (A) є (2, 4)
D. Det (A) є [2, 4]
Answers
Answered by
0
C₁ ----> C₁ + C₂
Expanding along C₁ :
= 2 | 1 sinθ |
| -sinθ 1 |
= 2 [ 1 - (-sin²θ) ]
= 2 [ 1 + sin²θ ]
⇒ 0 ≤ sinθ ≤ 2π
0 ≤ sin²θ ≤ 2π
1 ≤ 1 + sin²θ ≤ 2π { Adding 1 }
2 ≤ 2(1 + sin²θ) ≤ 4π { Multiplying 2 }
Hence, Det ( A ) ∈ [2,4]
(D) is correct option.
Similar questions