Math, asked by Anonymous, 7 months ago

Let \alpha and \beta be the distinct roots of \sf{ax^2\ +\ bx\ +\ c\ =\ 0} then,

\displaystyle \sf{\lim_{x\ \to\ \alpha} \dfrac{1\ -\ \cos(ax^2\ +\ bx\ +\ c)}{(x\ -\ \alpha)^2}\ is\ :\ ?}


• Give Proper Explanation!

• Don't Spam!
___________________

​Answer is \sf{\dfrac{a^2}{2} ( \alpha\ -\ \beta)^2}

Answers

Answered by BrainlyIAS
17

Formula Applied :

\bigstar\ \; \sf 1-cos\theta=2sin^2\dfrac{\theta}{2}

\bigstar\ \; \sf ax^2+bx+c=a(x-\alpha)(x-\beta)

when  α , β are zeroes of polynomial .

\bigstar\ \; \sf  \displaystyle{\lim_{x\to 0}}\dfrac{sin\ x}{x}=1

Explanation :

\displaystyle \sf  \lim_{x \to \alpha} \dfrac{1-cos(ax^2+bx+c)}{(x-\alpha)^2}\\\\\to \sf \lim_{x \to \alpha}\dfrac{2sin^2\left( \frac{ax^2+bx+c}{2}\right)}{(x-\alpha)^2}\\\\\to \sf \lim_{x\to \alpha} \dfrac{2sin^2 \left(\frac{a(x-\alpha)(x-\beta)}{2}\right)}{(x-\alpha)^2}

\to \displaystyle \sf \lim_{x\to \alpha} \dfrac{2sin^2 \left(\frac{a(x-\alpha)(x-\beta)}{2}\right)}{(x-\alpha)^2}\times \dfrac{\frac{a^2(x-\beta)^2}{4}}{\frac{a^2(x-\beta)^2}{4}}\\\\\to \sf \lim_{x\to \alpha} \dfrac{sin^2\left( \frac{a(x-\alpha)(x-\beta)}{2}\right)}{\left(\frac{a(x-\alpha )(x- \beta)}{2}\right)^2}\times \dfrac{2a^2(x-\beta)^2}{4}

\to \sf \displaystyle (1)^2\times \dfrac{a^2(\alpha - \beta)^2}{2}

\to \sf \pink{\dfrac{a^2}{2} (\alpha - \beta)^2}\ \; \bigstar

Answered by Anonymous
6

Formula Applied :

\bigstar\ \; \sf 1-cos\theta=2sin^2\dfrac{\theta}{2}★

\bigstar\ \; \sf ax^2+bx+c=a(x-\alpha)(x-\beta)★  \\

when α , β are zeroes of polynomial .

\bigstar\ \; \sf \displaystyle{\lim_{x\to 0}}\dfrac{sin\ x}{x}=1★  </p><p>

Explanation :

\begin{gathered}\displaystyle \sf \lim_{x \to \alpha} \dfrac{1-cos(ax^2+bx+c)}{(x-\alpha)^2}\\\\\to \sf \lim_{x \to \alpha}\dfrac{2sin^2( \frac{ax^2+bx+c}{2})}{(x-\alpha)^2}\\\\\to \sf \lim_{x\to \alpha} \dfrac{2sin^2 (\frac{a(x-\alpha)(x-\beta)}{2})}{(x-\alpha)^2}\end{gathered}

\begin{gathered}\to \displaystyle \sf \lim_{x\to \alpha} \dfrac{2sin^2 (\frac{a(x-\alpha)(x-\beta)}{2})}{(x-\alpha)^2}\times \dfrac{\frac{a^2(x-\beta)^2}{4}}{\frac{a^2(x-\beta)^2}{4}}\\\\\to \sf \</p><p>lim_{x\to \alpha} \dfrac{sin^2( \frac{a(x-\alpha)(x-\beta)}{2})}{(\frac{a(x-\alpha )(x- \beta)}{2})^2}\times \dfrac{2a^2(x-\beta)^2}{4}\end{gathered}

	\to \sf \displaystyle (1)^2\times \dfrac{a^2(\alpha - \beta)^2}{2}

\to \sf \pink{\dfrac{a^2}{2} (\alpha - \beta)^2}\ \; \bigstar

Similar questions